
Bayesian Optimisation with

Multi-Task Gaussian Processes

by

Michael Arthur Leopold Pearce

Thesis

Submitted to the University of Warwick

in partial fulfilment of the requirements

for admission to the degree of Doctor of Philosophy of

Mathematics and Complexity Science

Doctor of Philosophy

Centre for Complexity Science

September 2019



Contents

Acknowledgments vi

Declarations vii

Abstract ix

Chapter 1 Introduction 1

Chapter 2 Background and Related Work 4

2.1 Ranking and Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Gaussian Process Model Based Optimization . . . . . . . . . . . . . 9

2.3 Multi–Task Gaussian process Based Optimization . . . . . . . . . . . 11

2.3.1 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . 11

2.3.2 Multi–Information–Source Optimization . . . . . . . . . . . . 13

2.3.3 Task Conditional Optimization . . . . . . . . . . . . . . . . . 13

2.3.4 Optimization of Sums of Functions and Common Random

Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3 Technical Background 17

3.1 Gaussian Process Bayesian Optimisation . . . . . . . . . . . . . . . . 17

3.2 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Generative Model . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Conditioning a Gaussian Distribution . . . . . . . . . . . . . 19

3.2.3 Stochastic Function Outputs . . . . . . . . . . . . . . . . . . 21

3.2.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . 22

i



3.2.5 Multi-Task Gaussian Processes . . . . . . . . . . . . . . . . . 23

3.3 Value of Information for Acquisition Functions . . . . . . . . . . . . 25

3.3.1 Knowledge Gradient . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Efficient Global Optimization . . . . . . . . . . . . . . . . . . 28

3.3.3 General Derivation Procedure . . . . . . . . . . . . . . . . . . 30

3.3.4 A Failure Case of the Myopic Value of Information Recipe . . 32

Chapter 4 Discrete Task Conditional Ranking and Selection 34

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Regional Expected Value of Improvement Policy . . . . . . . 43

4.3.2 Noisy Expected Value of Improvement Policy . . . . . . . . . 45

4.3.3 Expected Value of Improvement Policy, EVI . . . . . . . . . . 47

4.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Synthetic Experiments Setup . . . . . . . . . . . . . . . . . . 49

4.4.2 Mapping based on Latin Hypercube Design . . . . . . . . . . 50

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.4 The Early/Tardy Machine Scheduling Problem . . . . . . . . 54

4.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 5 Continuous Task Conditional Ranking and Selection 58

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Local Expected Value of Improvement . . . . . . . . . . . . . 63

5.3.2 Regional Expected Value of Improvement . . . . . . . . . . . 63

5.3.3 Neighbors Only Regional Expected Value of Improvement . . 65

5.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 Alternative Methods . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ii



Chapter 6 Multi-Task Conditional Bayesian Optimization 75

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Myopic Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1 CLEVI Sampling Policy . . . . . . . . . . . . . . . . . . . . . 82

6.3.2 REVI Sampling Policy . . . . . . . . . . . . . . . . . . . . . . 86

6.3.3 Discrete Task Distributions . . . . . . . . . . . . . . . . . . . 89

6.3.4 Efficient Monte Carlo Integration . . . . . . . . . . . . . . . . 90

6.4 Comparison with the Profile Expected Improvement Algorithm . . . 92

6.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5.1 Rosenbrock Test Function . . . . . . . . . . . . . . . . . . . . 94

6.5.2 High Dimensional Test Functions . . . . . . . . . . . . . . . . 96

6.5.3 Finite Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 7 Bayesian Optimization with Uncertain Inputs 103

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3.1 Efficient Global Optimization for Input Uncertainty . . . . . 105

7.3.2 Knowledge Gradient for Input Uncertainty . . . . . . . . . . 108

7.3.3 Including the Sampled Input in the Monte-Carlo Integral . . 109

7.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4.1 Benchmark Methods . . . . . . . . . . . . . . . . . . . . . . . 112

7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Chapter 8 Bayesian Optimization with Common Random Numbers115

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3 A Surrogate Model for Simulation with Common Random Numbers 118

8.3.1 The Gaussian Process Generative Model . . . . . . . . . . . . 119

iii



8.3.2 Inferring the Objective θ(x, s) . . . . . . . . . . . . . . . . . . 122

8.3.3 Inferring the Target θ̄(x) . . . . . . . . . . . . . . . . . . . . . 123

8.4 Knowledge Gradient for Common Random Numbers . . . . . . . . . 124

8.4.1 Acquisition Function . . . . . . . . . . . . . . . . . . . . . . . 124

8.4.2 Implementation Practicalities . . . . . . . . . . . . . . . . . . 126

8.4.3 Algorithm Properties . . . . . . . . . . . . . . . . . . . . . . . 129

8.5 Comparison with Previous Work . . . . . . . . . . . . . . . . . . . . 130

8.5.1 Compound Sphericity . . . . . . . . . . . . . . . . . . . . . . 130

8.5.2 Comparison with Knowledge Gradient with Pairwise Sampling 134

8.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.6.1 Compared Algorithms and Variants . . . . . . . . . . . . . . 137

8.6.2 Synthetic Data, no Bias Functions . . . . . . . . . . . . . . . 138

8.6.3 Assemble to Order Benchmark . . . . . . . . . . . . . . . . . 140

8.6.4 Ambulances in a Square Problem . . . . . . . . . . . . . . . . 142

8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Chapter 9 Conclusions and Future Work 146

9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Appendix A Proofs from Chapter 4 148

A.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.1.1 Preparatory Material . . . . . . . . . . . . . . . . . . . . . . . 149

A.1.2 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . 152

A.2 Dynamic Programming Formulation . . . . . . . . . . . . . . . . . . 153

A.2.1 Myopic Optimality of the REVI Policy . . . . . . . . . . . . . 154

A.2.2 Asymptotic Optimality . . . . . . . . . . . . . . . . . . . . . 155

A.2.3 Bound on Sub-Optimality, Proof of Theorem 4.3.2 . . . . . . 156

A.2.4 Preparatory Material . . . . . . . . . . . . . . . . . . . . . . . 157

A.2.5 Proof of Theorem A.2.3 . . . . . . . . . . . . . . . . . . . . . 159

iv



Appendix B Proofs and Further Experiments from Chapter 8 160

B.0.1 Estimating the Target . . . . . . . . . . . . . . . . . . . . . . 160

B.0.2 Proof of Theorem 8.4.1 . . . . . . . . . . . . . . . . . . . . . 163

B.0.3 Proof of Propositions 8.5.3 and 8.5.4 . . . . . . . . . . . . . . 168

B.1 Further Experimental Results . . . . . . . . . . . . . . . . . . . . . . 172

B.2 Algorithm Implementation Details . . . . . . . . . . . . . . . . . . . 175

B.2.1 Hyperparameter Learning . . . . . . . . . . . . . . . . . . . . 175

B.2.2 Optimization of KGCRN
n (x, s) . . . . . . . . . . . . . . . . . . 176

v



Acknowledgments

This thesis would not have been possible without the guidance, patience and kindness

from my supervisor, the brilliant Professor Jürgen Branke whose endless stream of

ideas and long meandering discussions that have made my PhD a pleasure, a journey

with much excitement and stimulation. I am also truly grateful for much guidance

and support from my external collaborator, Matthias Poloczek, whose cool calm

advice and ideas led me to working on many fascinating projects.

I would also like to extend my gratitude to the students and members of

staff, past and present, of the Centre for Complexity Science, particularly Jeremy

Reizenstein, Janis Klaise, Rob Eyre, Ayman Boustati, Alex Bishop, Jim Skinner,

Iliana Peneva, Jason Lewis, Matthew Groves, Jessie Liu and Juan Ungredda, all of

whom I am always happy to sit in the common room and procrastinate, discussing

random research ideas and just gossiping.

To my parents, I extend my gratitude for support in the form of free accom-

modation, loans, restaurant dinners. To my siblings I am grateful for the crazy

awesome ski trips, intense computer games and bike rides.

Finally I owe unlimited thanks my wife, Ai Funaki, who has always provided

support, tolerated my long working hours before big deadlines (including this one),

organised so many things, our wedding, multiple holidays, flat hunting. Thank you,

Ai!

vi



Declarations

This thesis is submitted to the University of Warwick in support of my application

for the degree of Doctor of Philosophy. It has been composed by myself and has not

been submitted in any previous application for any degree.

Parts of this thesis have been previously published by the author in the following:

• Michael Pearce and Jürgen Branke. Efficient information collection on portfolios.

Warwick Research Archive Portal, 2017c

• Michael Pearce and Jürgen Branke. Efficient expected improvement estimation

for continuous multiple ranking and selection. In Proceedings of the 2017

Winter Simulation Conference, pages 171–183. IEEE Press, 2017b

• Michael Pearce and Jürgen Branke. Continuous multi-task bayesian optim-

isation with correlation. European Journal of Operational Research, 270(3):

1074–1085, 2018

• Michael Pearce and Jürgen Branke. Bayesian simulation optimization with

input uncertainty. In 2017 Winter Simulation Conference (WSC), pages 2268–

2278. IEEE, 2017a

• Michael Pearce, Matthias Poloczek, and Branke Jürgen. Bayesian simulation

optimization with common random numbers. In 2019 Winter Simulation

Conference, page to appear, 2019

• Michael Pearce, Matthias Poloczek, Juergen Branke, Bayesian Optimization

Allowing For Common Random Numbers. In Preparation

vii



Research was performed in collaboration during the development of this thesis, but

does not form part of the thesis:

• Matthew Groves, Michael Pearce, and Jürgen Branke. On parallelizing multi-

task bayesian optimization. In 2018 Winter Simulation Conference (WSC),

pages 1993–2002. IEEE, 2018

viii



Abstract

Gaussian processes are simple efficient regression models that allows a user to encode

abstract prior beliefs such as smoothness or periodicity and provide predictions with

uncertainty estimates. Multi-Task Gaussian processes extend these methods to model

functions with multiple outputs or functions over joint continuous and categorical

domains. Using a Gaussian process as a surrogate model of an expensive function

to guide the search to find the peak is the field of Bayesian optimisation. Within

this field, Knowledge Gradient is an effective family of methods based on a simple

Value of Information derivation yet there are many problems to which it hasnt been

applied. We consider a variety of problems and derive new algorithms using the

same Value of Information framework yielding significant improvements over many

previous methods. We first propose the Regional Expected Value of Improvement

(REVI) method for learning the best of a set of candidate solutions for each point in

a domain where the best solution varies across the domain. For example, the best

from a set of treatments varies across the domain of patients. We next generalize

this method to optimising a range of continuous global optimization problems, multi-

task conditional global optimization, querying one objective/task can inform the

optimisation of other tasks. We then follow with an natural extension of KG to

the optimization of functions that are an average over tasks that the user aims to

maximise. Finally, we cast simulation optimization with common random numbers

as optimization of an infinite summation of tasks where each task is the objective

with a single random number seed. We therefore propose the Knowledge Gradient

for Common Random Numbers that sequentially determines a seed and a solution

to optimise the unobservable infinite average over seeds.

ix



Sponsorships and Grants

This work was performed whilst at the University of Warwick Centre for Complexity

Science funded by the Engineering and Physical Sciences Research Council UK.

x



Chapter 1

Introduction

Black–box optimisation is the general name given to algorithms that do not incor-

porate any problem specific knowledge in their optimisation procedure and therefore

such algorithms are mostly application agnostic. We focus on a range of algorithms

for expensive black box optimisation where each call to the objective function (black–

box) may take minutes or hours. In such a setting, an optimisation algorithm is

afforded more time to decide at which points in the domain of the function to

evaluate based on the history of already observed points. This extra time in decision

making means that surrogate models may be used and we specifically use Gaussian

processes. The statistical predictions provided by the model are combined with a

value of information recipe for deriving a principled efficient search methods.

In Chapter 4, we consider a problem inspired by algorithm selection and the

no-free lunch theorems. Given a large collection of problem instances and a small

set of algorithms that can be applied to each instance, no single algorithm is better

than the rest therefore a user aims to find the best algorithm for each instance.

Similarly, given a population of patients and multiple treatments, a clinician aims

to learn the optimal treatment for each patient. We approach the problem using

Gaussian processes to model the relationship between problem instance features

and algorithm performance. As a consequence, for a single instance, the search for

the best algorithm may be treated as a Bayesian ranking and selection problem

(R&S). The other added benefits of using a Gaussian process are first, information

can be transferred across instance space, predicting algorithm performance on a new

1



instance. Second, and more importantly, the influence of a new observation can be

aggregated across instances such that data is collected by running one algorithm on

one instance to maximise information gain across all instances.

In Chapter 5, we extend the work of the previous chapter to the case of

a continuous domain of problem instances, for example optmising a simulator for

each environme over a range of simulator settings. First, we consider freezing

certain randomly generated quantities enable caching of computations. Second,

further exploiting the covariance structure of the fitted Gaussian process model, the

computational overhead of the sampling algorithm can be greatly reduced without

affecting the convergence or sample efficiency thereby enabling the use of much larger

Monte-Carlo sample sizes. We use the same freezing and caching of computations in

the next chapter.

In Chapter 6, we tackle the most general version of the previous two chapters,

both the space of problems instance and the space of solutions are continuous. For

a given instance, we must solve a continuous global optimisation. As the previous

methods generalised ranking and selection to multiple correlated R&S problems, this

generalises global Bayesian optimisation to multiple correlated global optimisation

problems. Again, by accounting for similarity across problems in both the model

fitting and in the data acquisition, we propose a method that significantly improves

upon two other algorithms from the literature.

In Chapter 7, we move away from the previous works and focus on the optim-

isation of a weighted sum of objective functions. Such problems arise in simulation

optimisation with input distribution uncertainty to a simulator averaged over a range

of possible input distributions, each function is an instance of the simulator with

different input distribution and the user aims to optimise the average of simulators.

We propose augmentations to both the popular EGO and Knowledge Gradient

algorithms. On synthetic experiments, we demonstrate significant advantages over

optimising simply the function with largest weight.

Finally in Chapter 8, we consider simulation optimisation with common

random numbers. A common problem setting where a user must optimise the

expectation of a stochastic objective, however the objective takes a random number

2



stream (or just its seed) as input. By using the same common random number stream

for multiple calls to the objective, the stochasticity of differences in outputs for two

inputs is reduced and can be exploited for optimisation. We cast the problem as

simulation optimisation with “input uncertainty” where the seed is an unknown input

and the target of optimisation is the infinite average over seeds. This perspective

a natural adaptation of the Knowledge Gradient method. We highlight multiple

nuances of the problem and show that modelling choices made by previous works

lead to significant inefficiencies which we duly handle resulting in a significantly

improved algorithm.

We next summarise previous works in a variety of fields upon which we build

and provide a technical background in Chapter 3.

3



Chapter 2

Background and Related Work

Imagine a user is given an objective function with multiple inputs and a single output,

optimization is the task of finding the input that maximizes the output. If the function

is a differentiable mathematical expression of the inputs, the optimum may be found

by either solving for roots of the derivative or by gradient ascent. However, in many

applications, the function from inputs to outputs has no mathematical expression or

derivatives, and there may be uncontrollable randomness in the function, i.e. the

input does not fully determine the output. Simulators are such functions and are

frequently used as a cheap fast surrogate of real world experiments. For example,

evaluating the traffic throughput of a junction with given traffic light timings under

many randomly generated traffic conditions. The throughput can be approximated

with a computer simulation much easier than with real world experiments that may

take weeks. Although, the relationship between timings and traffic throughput is a

non-trivial and stochastic function. With the increasing power of computation in the

last few decades, expensive simulation that used to be for prediction is increasingly

used for optimization [Fu, 2002]. However, the optimization of such a function

requires an algorithm capable of efficiently searching over the domain, e.g. efficently

searching traffic light timings to maximise throughput.

There are many algorithms for such problems; genetic algorithms (GA) [Davis,

1991, Whitley, 1994] maintain a population of inputs and sequentially evaluate the

output, or ”fitness” of all population members, then evolve the population with

crossover and mutation of the ”fittest” members to produce a new population of

4



children. Simulated annealing (SA) [Kirkpatrick et al., 1983] is based on statistical

mechanics and treats the input as a state and the objective function as an energy

landscape. The state is randomly perturbed at each time step with a bias toward

decreasing energy whose strength is controlled by a “temperature” parameter that

varies over time trading off exploration and exploitation.

All optimization algorithms make assumptions about the objective function

(with the exception of uniform random search). For example, genetic algorithms

incorporate a crossover operator, that selects two high fitness input vectors (parents)

and creates a new input (child) mixing the dimensions of the two parents. Effectively,

this operator is useful if the objective function has “additive structure”, the output

is a function of some of the input dimensions added to another function of the

remaining dimensions. In such a case, the objective may be optimized by holding one

set of input dimensions fixed and optimizing over the remaining and vice versa, much

like the crossover operator. Likewise, random perturbations such as in mutation and

simulated annealing loosely assume that good inputs are near other good inputs,

local similarity. These methods are robust to violations of such assumptions and still

find good inputs for functions that are highly discontinuous, or with varying output

magnitudes or roughness across the domain and other capricious features.

However for functions that are known a priori to be smooth and continuous,

GAs and SA methods may be wasteful, e.g. not using a numerical gradient approx-

imation for gradient ascent. Instead, building an algorithm that aggressively exploits

more features of the function than weakly exploiting additive structure and local

similarity of the of outputs can be far more efficient.

The input-output evaluation history from an optimization algorithm may

be viewed as a dataset. In order to predict output for a new input, data must be

combined with user assumptions about the interaction between input and output using

a function approximator. Examples include linear regression (assumes the output is

a weighted average of basis functions), k-nearest neighbors (local similarity), neural

networks assume (highly non-linear and complex), Gaussian processes (smoothness).

In order to construct an optimization algorithm that can more aggressively exploit

continuity and smoothness or linearity between input and output, we may start by

5



incorporating a function approximator that includes such prior beliefs. These kind of

algorithms come from the class of “model-based” methods, and data collection may

be viewed as iteratively constructing an ”optimal training set” for the prediction

model. The model needs to be accurate at peaks and less accurate at troughs. In

contrast, GAs and SA are “model-free”.

Examples of model-based optimisation algorithms include the Efficient Global

Optimization (EGO) [Jones et al., 1998b] that combines a Gaussian process model

with the expected improvement a new output will have over the best point so far

to determine a new input to evaluate. The Stochastic trust-region response-surface

method (STRONG) [Chang et al., 2013], combines a quadratic approximation to the

objective function with a trust region to guide the search for the optimal input where

the model is accurate. Sequential model-based optimization for general algorithm

configuration (SMAC) Hutter et al. [2011], combines a random forest regression

model with the same expected improvement of EGO.

When an algorithm with built–in assumptions is applied to an objective

function that has the assumed properties, model-based methods are generally much

more evaluation efficient than model-free, meaning they find good inputs in much

fewer function calls. However they can be less robust to violation of assumptions,

applying a model based method that assumes smoothness to a discontinuous objective

function may cause unpredictable behaviour and may fail to find good inputs.

However, simulated annealing or a genetic algorithm will carry on happily.

Fundamentally, the idea that no one algorithm can beat all other algorithms

on all uniformly distributed problems is formalised in the no-free-lunch theorems

[Wolpert, 2013, Wolpert et al., 1997]. The uniform distribution over functions is

equivalent to making no assumptions regarding the relation between visited and

unseen search points, intuitively no algorithm can optimise a realisation of white-

noise better than another algorithm. Although practical relevance of such theorems

is debated [Igel, 2014, Igel and Toussaint, 2003], the theorems remind us that one

can always adversarially search for problems where even random search is the best

algorithm [Oltean, 2004].

Therefore, to soften the assumptions of a model, one may use Bayesian

6



statistics. Philosophically, this branch of mathematics emphasises making prior

beliefs explicit and accounting for uncertainty in such assumptions. Model based

optimisation algorithms make a user’s prior beliefs about an unknown objective

function explicit in order to be exploited by an optimization algorithm. Therefore

these fields are complementary and their intersection is Bayesian optimisation. This is

a powerful class of data efficient methods that has been receiving increasing attention

in recent years, sparked by the now famous EGO algorithm in the engineering

literature and more recently by Snoek et al. [2012] in the machine learning literature.

There exist many Bayesian function approximators, Bayesian linear regression

[Bishop, 2006], Bayesian neural networks [Hernández-Lobato and Adams, 2015], or

Gaussian processes [Rasmussen and Williams, 2004]. Such function approximators

provide uncertainty estimates with their predictions and therefore are models that

“know what they don’t know”, returning high uncertainty for a prediction that is

believed to be inaccurate. These uncertainty estimates are ideal for data efficient

optimisation, there is less value in function evaluations for inputs with low uncertainty.

Likewise, where predictions are high and uncertainty is moderate, there may be

much value in further evaluation for such an input to learn about the peak. Contrast

this with a standard GA or SA algorithm that both ignore their evaluation history,

the price to pay for robustness.

We next summarise literature in a range of optimisation domains.

2.1 Ranking and Selection

A user is faced with a problem (objective function) and there exist a small set of

possible solutions (inputs), however the best solution is not known and checking

the quality of a solution is stochastic, returning a noisy observation. This is an

optimization problem over a categorical search space and we assume there is no

information about the solution therefore only model-free methods apply. Myopic

sampling policies sequentially sample from alternatives in such a way that at each step,

the sample has the highest expectation of improving the objective, which typically is

either probability of correct selection (learn the identity of the best alternative), or

7



expected opportunity cost (learn about alternatives so as to maximize performance).

The Knowledge Gradient (KG) method investigated in Frazier et al. [2008] and Chick

et al. [2010] but going back to Gupta and Miescke [1996] is a myopic policy that

maintains an independent Bayesian posterior of the output of each solution. The

method allocates budget to myopically maximize the improvement in the peak of the

posterior mean, it is guaranteed to sample all solutions infinitely often so the true

best will become known when outputs are real valued. Frazier et al. [2009a] extend

the method to the case of correlated solutions, i.e., when sampling from one solution

may teach us something about the performance of similar solutions, however this is

only applicable when extra features of each alternative are available and may be used

in a model. The one-step look ahead nature of Knowledge Gradient means it can fail

to find good solutions when outputs are binary as only a single observations cannot

provide enough information to yield a one-step benefit. The optimal computing

budget allocation class of methods (OCBA) [Chen, 1996] sequentially allocate samples

to alternatives that maximize a lower bound on the probability of correct selection

under a posterior distribution of average output for each alternative. OCBA is

applicable even when outputs are binary and is also asymptotically consistent.

Branke et al. [2007] provide a review and comparison of several ranking and selection

methods, a more recent survey focusing on algorithms derived under the Bayesian

framework can be found in Chen et al. [2015]. Both KG and OCBA Ranking and

selection methods have been extended to multi-objective [Frazier and Kazachkov,

2011, Lee et al., 2004] and other optimisation scenarios which we cover in more detail

next under the Bayesian optimisation class of methods. Görder and Kolonko [2019]

provide a comprehensive review and summary of statistical methods. In contrast

with the above methods that utilise a statistical distribution over outputs, Racing

algorithms compare all solutions and sequentially eliminate solutions that become

significantly worse, or “fall-behind” [Birattari et al., 2002, Branke and Elomari, 2013],

which are easily implemented however good solutions may be eliminated due to bad

luck and hence the true optimal solution may not become known.

8



2.2 Gaussian Process Model Based Optimization

Contrasting with independent ranking and selection is the case when the search

space of the optimisation includes features that can be used with a model. For

this, Gaussian process regression (GP) gives a statistical distribution over possible

objective function values based on the data collected and a prior belief about similarity

of outputs across the domain. When function evaluations are costly, datasets of

collected points may be small and the ability to incorporate prior knowledge with

uncertainty is particularly beneficial compensating for the lack of data. For this

reason GPs have gained much attention in Bayesian optimization and simulation

optimisation. Along with a Bayesian surrogate model, the second component of

a Bayesian optimisation algorithm is an acquisition function, a function over the

space of inputs that quantifies the expected benefit of hypothetically augmenting

the dataset with the current input and corresponding (unknown) output. Given a

hypothetical new input, the distribution over the hypothetical new output is informed

by the Bayesian model. The acquisition function is optimised over inputs and the

best input is evaluated to yield output and the pair is added to the dataset. The

model is updated and the acquisition search repeats. The exploration-exploitation

trade-off is all incorporated into the acquisition function. We next discuss a variety

of algorithms that mainly differ by their acquisition function.

For deterministic functions, the popular Efficient Global Optimization (EGO)

algorithm [Jones et al., 1998a] uses a Gaussian process model combined with an

acquisition function that returns the Expected Improvement (EI) of a new output

over the current best output. The Sequential Kriging Optimization (SKO) algorithm

of [Huang et al., 2006a] extends the EGO algorithm to the case when function

evaluations are noisy. GPs are easily adapted to model noisy outputs and the

acquisition function is a heuristically designed extension of EI that incorporates

uncertainty yet lacks a principled derivation. On the other hand, Scott et al. [2011a]

extend the Knowledge Gradient for finite correlated alternatives to the continuous

input case, a GP over a discretisation of a continuous space is a multivariate

Gaussian and therefore equivalent to KG for correlated alternatives. Both SKO

9



and KG methods naturally recover the EI function when applied to deterministic

functions however KG is typically more efficient and we show in Chapter 3.3 that

both KG and EI can be derived from the same principle unlike SKO. The main

advantage of KG is that when evaluating the quality of a new input, the method

takes into account how the model at other inputs will change, the correlation across

the input space and predictions at other points are required in computing the

acquisition function, unlike SKO and EI which only use the mean and variance at

a single point to compute the acquisition function. The disadvantage is the added

computational cost. We refer to these more sophisticated acquisition functions as

“correlation aware”. Other popular Bayesian optimisation variants that take into

account covariance across inputs include Stepwise Uncertainty Reduction (SUR)

[Chevalier et al., 2014, Picheny, 2014] that computes the expected volume of the

surrogate model that will improve upon the current best point, an excursion set.

And the Integrated Expected Conditional Improvement (ICEI) [Gramacy and Lee,

2011] that is very similar to step wise uncertainty reduction and was made to handle

non-linear constraints on the inputs. Entropy Search (ES) [Hernandez-Lobato et al.,

2014, Villemonteix et al., 2009a] uses a GP over outputs to build a distribution over

the input domain that models the probability of any input being the maximiser.

The method aims to minimise entropy of this induced distribution over the input

domain, and can require much more computation than other methods. An extensive

overview and empirical comparison of various acquisition functions (referred to as

infill criteria) on a range of noisy problems has been provided by Jalali et al. [2017],

Picheny et al. [2013b]. In other fields such as bandits or control, a user typically aims

to maximise cumulative sum of outputs (instead of just the best final output). For

this, Upper Confidence Bound (UCB) algorithms are more popular [Srinivas et al.,

2010] that use a varying confidence bound to explicitly trade off exploitation, where

prediction is high, and exploration, where uncertainty is high. These methods are

more amenable to deriving bounds on the cumulative reward yet they are a function

of only the mean and variance at a given input and hence are not correlation aware.

Cumulative bounds have been derived for Knowledge Gradient methods however

they are often not informative.

10



2.3 Multi–Task Gaussian process Based Optimization

Multi–task Gaussian processes [Bonilla et al., 2008], also known as co–Kriging,

are Gaussian process models that are trained to predict vector valued functions,

or, equivalently, scalar valued functions that contain a categorical variable as an

input dimension, further described in Chapter 3.2.5. Hence they are useful for

multi-objective optimization, multi information source optimization, task conditional

optimisation, and average task optimisation. We next summarise work on each of

these different optimisation scenarios.

2.3.1 Multi-Objective Optimization

Given an objective function over a continuous domain with multiple outputs, each

output is an objective, or a criterion, and a user must find the set of inputs that

optimise each output as well as the compromise between competing objectives. Each

call to the objective function returns a vector of objective values. Pareto optimality

is a property of a current point in the output (vector) space. If there are any other

evaluated points in the output space for which all objectives are superior than the

current point, then it is dominated, if for all other points, the current point has at

least one objective that is better, then it is non-dominated. The set of points that

are non-dominated are denoted the Pareto set and such points are Pareto optimal

and form the Pareto front. The Pareto-Efficient Global Optimisation (ParEGO)

algorithm of Knowles [2006] is a sequential method that at each time step uses a

random projection to reduce each output vector to a scalar value (a scalarisation), this

preprocessing step converts the problem into a standard single objective problem such

that an iteration of standard EGO may be applied. The randomness of the projection

ensures that all objectives and all possible “compromises” between objectives are

considered and an approximation of the true Pareto set is discovered. It’s simplicity

and ease of implementation has led to it being widely used as a baseline for other

multi–objective algorithms. There exists a wide range of pre-processing scalarisation

functions and Chugh [2019] provides an overview. These methods do not model

similarity of outputs across objectives (not multi-task) and the acquisition is only

11



informed by mean and variance of output at the new input and past observations

(not correlation aware), hence there is much room for improvement.

When there are multiple outputs, fitting a multi-task model can be more

data efficient, however a correlation aware acquisition function must account for

multiple outputs across the same domain adding complexity. The Multi-Objective

Knowledge Gradient with unknown utility [Astudillo and Frazier, 2017] fits a multi-

task GP to model all objectives. It then uses a random linear weighted average,

a linear scalarisation, of the GP modelled outputs to form a new single output

GP for which standard KG is used to quantify the benefit of a new observation.

Further, a Monte-Carlo average over scalarisations is used, and the KG for each

one is computed and the average is the acquisition function. Linear combinations

of GPs form another GP allowing the use of single objective acquisition functions.

However, optimising linear scalarisations of objectives can only ever learn the convex

hull of the Pareto front, not the entire front including concave regions. Secondly,

the acquisition function is single task method (i.e. integrating over a univariate

output) applied to an “average task”, it is an approximation to a true value of

information procedure (integrating over a multivariate output). However in our

(extensive, unpublished) experiments, making a true multi-task acquisition function

did not lead to any benefit. Picheny [2015] similarly adapts the single objective

SUR to multiple-objectives, computing the volume of improvement over the Pareto

front, a multi objective excursion set. Contrasting with all the previous methods,

the Predictive Entropy Search for Multiple Objectives, PESMO, [Hernández-Lobato

et al., 2016], follows entropy search and instead considers a distributions over the

input space induced by the GP over outputs. The method builds a binary classifier

mapping each input point to either dominated or a non-dominated in the output

space. The method collects data to maximise integrated entropy of the binary

classifier over the whole input domain. There have been many alternative extensions

of BO methods to multiple objectives that also consider a simpler binary classifier

based method [Zuluaga et al., 2013], a more recent entropy search based method,

[Suzuki et al., 2019]. As with global optimisation, accounting for changes in the

model at other inputs can provide performance improvements however this comes

12



with added compuation.

2.3.2 Multi–Information–Source Optimization

Multi information source, or multi-fidelity, optimization is where a user aims to

optimise an expensive objective function, e.g. a big accurate simulator, but also

has access to a cheaper but less accurate surrogate of the objective function, e.g.

a smaller toy simulator. These methods use a multi–task Gaussian process model

to share information across surrogate models and the acquisition search is over

both inputs and information source. The acquisition function is also cost–adjusted,

samples are allocated to the input with the highest acquisition benefit per unit

cost. Forrester et al. [2007] provide an algorithm that combines co-kriging with EI

to optimise wing design using two levels of simulation accuracy and Huang et al.

[2006b] extend the SKO algorithm to the multi-fidelity setting. Again both methods

do no use a correlation aware acquisition function and are heuristic modifications

of EI. The Multi-Task Bayesian Optimization (MTBO) algorithm of Swersky et al.

[2013] applies a multi–task Gaussian process to optimise hyperparameters of machine

learning models. By cheaply training the models on small subsets of training data,

one can learn about the models when trained using the expensive full training dataset.

The method uses both entropy search and EI and ES for acquisition. This approach

of using subsets of data was extended by Klein et al. [2016] to be able to pick an

arbitrary dataset size. The acquisition again used a modification of EI.

The Multi-Information Source algorithm [Poloczek et al., 2016a] builds upon

the MTBO algorithm with a more sophisticated Gaussian process model and a

cost-adjusted Knowledge Gradient is used as the acquisition function. Picheny et al.

[2013a] consider a similar case where the precision of an evaluation can be chosen, at

the expense of higher computational cost for higher precision.

2.3.3 Task Conditional Optimization

A few papers extend the idea of Bayesian Optimisation to the case where several

related optimisation problems have to be solved sequentially. Morales-Enciso and

Branke [2015] consider the optimisation of a changing objective function where

13



the collected data and the GP model is over the joint space of inputs and time.

The acquisition function uses expected improvement of a new point over other

points already evaluated for the same objective function. Treating time as an extra

input dimension is also used by Poloczek et al. [2016b] to “warm-start” Bayesian

Optimisation, however with the Knowledge Gradient as the acquisition function

for the current optimisation task. The field of Contextual multi-armed bandits

is an extension of the multi-armed bandit problem where the best arm depends

on a context that is randomly changing with time. In such a setting, sampling

policies must aim to maximise cumulative reward, see Zhou [2015] for a survey.

Krause and Ong [2011] use Gaussian processes over a domain of both inputs and

context variables and propose an UCB acquisition function to find the best arm for

each context. Related to contextual multi-armed bandits is the field of contextual

policy search, which tries to identify the best parameters of a lower level policy

depending on the context, see Deisenroth et al. [2013] for a survey. Bardenet et al.

[2013], Ginsbourger et al. [2014] consider the same problem we do in Chapter 6, the

simultaneous conditional optimisation of multiple functions with similarity across

functions and a user aims to find the peak of each function. Which function to

evaluate (or context features/task setting) as well as the input is free to be chosen

by the algorithm. These methods fit a Gaussian process over the joint space of

task settings and inputs, and both methods use an adaptation of the EI acquisition

function and therefore acquisition does not consider how new data will affect other

tasks and other peaks. Sambakhé et al. [2019] consider the same problem however

with noisy function evaluations and adapt the SKO acquisition function. Again,

acquisition is not correlation aware nor mathematically principled. In our work, we

use a value of information procedure which equates to adapting KG and further

accounting for how evaluating one task can inform optima of other tasks, yielding

significant improvements.

As a special case of the above problem, if the task/context is continuous,

however the input to be optimised for each context is categorical, this may be

viewed as a task conditional generalisation of Ranking and Selection. The problem

of learning which drug from a small set of treatments is most effective for any given

14



patient was considered by Xu et al. [2014]. Patients are characterized by continuous

biomarkers and there are three treatments, the approach uses a hierarchical Bayesian

model over partitions of the patient biomarker space. Hu and Ludkovski [2015]

consider the same problem, however conveyed as ranking response surfaces— for each

point across a domain, find the best surface. The method uses independent Gaussian

process models and proposes an acquisition function based on an approximation to

the maximum of all surfaces and how this maximum is affected by a new sample,

although this method is not correlation aware. In Chapters 4 and 5, we again adapt

KG and integrate the effect of acquisition on each task over the task domain. Shen

et al. [2017] consider the same approach of integrating over contexts with a PCS

ranking and selection algorithm and more recently, Zhang et al. [2019] used KG

building upon our work by proving consistency in continuous domains; the true best

alternative for each task will become known eventually.

2.3.4 Optimization of Sums of Functions and Common Random

Numbers

Imagine a user is given multiple functions over a common domain and is required

to find the input that maximises the average or sum of the functions but can only

evaluate one at a time. This arises in simulation with distribution uncertainty [Pearce

and Branke, 2017a] and tuning parameters of machine learning algorithms by k-fold

cross validation [Swersky et al., 2013] and, as we show in Chapter 8, simulation

optimisation with common random numbers. A simulator requires calibration from

real world data in order to be a realistic surrogate of reality. When such calibration

parameters are not known with accuracy, the best action a user can take is to optimize

the average over a range of simulators each instantiated with a different parameter

setting. In our work [Pearce and Branke, 2017a], we apply the KG acquisition

function to the weighted sum of functions, effectively reproducing the multi-objective

algorithm with linear scalarisations of Astudillo and Frazier [2017] discussed above.

More recently, Toscano-Palmerin and Frazier [2018] independently proposed a similar

method to our work however using a more recently proposed evaluation method for

the KG acquisition function and perfroming a more extensive analysis.

15



By evaluating two solutions with the same random number seed, one can

learn more about the relative ranking of solutions, the difference between their

outputs may have reduced stochasticity. For example, the seed may influence the

difficulty of a randomly generated scenario, and the performance of all solutions

degrades for difficult scenarios and improves for easy scenarios. When modelling, this

is accounted for by incorporating correlation in the stochastic noise of outputs from

the same seed, in contrast to the common modelling assumption of independent noise

for all outputs. Combining CRN with ranking and selection has been extensively

studied with two-stage methods [Chick and Inoue, 2001, Nelson and Matejcik, 1995]

that initially sample all solutions multiple times to learn noise covariance between

solutions and a second stage exploits the learnt structure. Fu et al. [2004] further

investigate the second stage of the two stage process. More recently, a sequential

method has been proposed by Görder and Kolonko [2019] that keeps track of all

sampled candidates and uses the same series of seeds for all candidates enabling

reuse of seeds. The effects of CRN (or non-diagonal noise matrices) upon Gaussian

processes was considered by Chen et al. [2012] that showed interesting results we

discuss in Chapter 8. Xie et al. [2016] augmented correlated KG with a second

acquisition function that allowed for measuring the difference of solutions using CRN

and demonstrated performance improvements over non-CRN KG. However, despite

being a KG based method, the algorithm was not based on Value of Information and

assumed that a seed could not be reused from the history. As a result a workaround

is proposed that we show leads to many sub-optimal effects we discuss in Chapter 8

and propose solutions.

16



Chapter 3

Technical Background

3.1 Gaussian Process Bayesian Optimisation

We assume we are given an objective function F (x) defined over a domain x ∈ X

and X is typically a box constrained search space, X ⊂ Rd for d < 10. We further

assume F (x) is stochastic, repeated calls with the same x do not return the same

value. We assume F (x) is not differentiable and each call is expensive taking from

minutes to hours for a single evaluation. The goal is to find the input that is best in

expectation

arg max
x∈X

E[F (x)]

and we have an evaluation budget of N calls to the objective function. The standard

Bayesian optimization algorithm is composed of two phases. The first phase initializes

a dataset by randomly choosing ninit << N input values Xninit = {x1, ..., xninit} and

evaluating the objective Y ninit = F (Xninit) ∈ Rninit . The input-output pairs form a

dataset Dninit which is used to build a Gaussian process surrogate model, a function

approximator, of F (x). The second phase is to use the Gaussian process to inform

an acquisition function that quantifies the benefit of a new evaluation F (xn+1) at

xn+1. Optimizing the acquisition function determines the next input xn+1, then the

objective is evaluated yn+1 = F (xn+1). Using the new dataset Dn+1 the method

repeats until the whole budget is consumed. We next introduce Gaussian process

regression and then a recipe for deriving acquisition functions.

17



3.2 Gaussian Process Regression

Given a stochastic black-box function F : X → R where X ⊂ Rd, we may model

F as a realisation of a stochastic process. A stochastic process is a set of indexed

random variables, indices may be viewed as inputs and realizations of the random

variables as outputs and effectively stochastic processes are random functions.

3.2.1 Generative Model

A Gaussian process is a random function generator whose sampled outputs are Gaus-

sian distributed: given an input x, or a set of inputs (“indices”) Xn = {x1, ..., xn},

the distribution of the n corresponding y values is an n-dimensional multivariate

Gaussian,

Y n ∼ N (µ,Σ) (3.1)

where µ ∈ Rn and Σ ∈ Rn×n are the mean and covariance matrix. The probability

density of any Y n vector given parameters is

P[Y n|µ,Σ] =
1

(2π)n/2|Σ|
exp

(
−1

2
(Y n − µ)ᵀΣ−1(Y n − µ)

)
. (3.2)

The mean vector may be given by evaluating a mean function µ = µ(Xn), and

likewise the covariance matrix elements are given by evaluating a covariance function

for all pairs of inputs Σij = k(xi, xj) for all 1 ≤ i, j ≤ n. Sampling a single Y n ∈ Rn

vector and plotting Y n versus Xn reveals a single random function evaluated at Xn.

Any vector may be viewed as a function from it’s element indices to real

values µ : {1, 2, ..., n} → R, and any matrix may be viewed as a function from

pairs of element indices to real values Σ : {1, 2, ..., n} × {1, 2, ..., n} → R. In this

sense a function over a continuous domain may be viewed as an vector with a

continuous “index”, or an infinite dimensional vector. Similarly a function of two

arguments is a infinite dimensional matrix. Therefore a Gaussian process is an infinite

dimensional multivariate normal distribution. Hence Gaussian processes are often

called “distributions over functions”. However, a distribution over functions take a a

function as input and return a probability density as output. Instead, a Gaussian

18



process provides a distribution over function values on a finite discretization, Xn,

of larger space. The mean and covariance functions can be evaluated for arbitrary

cardinality of |Xn| and hence

The covariance function, k(xi, xj), dictates the covariance between sampled

yi and yj . For example if xi ≈ xj then we would like yi ≈ yj . This is captured by

the popular squared exponential covariance function

k(x, x′) = σ2 exp

(
(x− x′)2

2l2

)
(3.3)

where σ2 and l are hyperparameters dictating the magnitude of vertical and horizontal

fluctuations in the generated functions and for now we assume they are known and

fixed.

3.2.2 Conditioning a Gaussian Distribution

We first temporarily ignore any Xn values and focus on vectors Y n ∼ N(µ,Σ).

Given a multivariate Gaussian distribution with mean µ ∈ Rn and covariance matrix

Σ ∈ Rn×n, let Y n ∈ Rn be a single sample vector from the given distribution.

Suppose we know µ, Σ and only the first na < n dimensions of a sample vector Y n

denoted Y a ∈ Rna and the remaining nb = n − na dimensions as Y b ∈ Rnb . We

can ask the question “what must the Y b ∈ Rnb look like?” For example given a

population distribution of people’s heights and shoe sizes, and only a person’s shoe

size, can we statistically predict their height? The distribution of the unobserved

dimensions Y b must be consistent with both Y a as well as the generated distribution

of all dimensions, the joint distribution is as follows

P[(Y a, Y b)] = P[Y n] = N(Y n|µ,Σ)

= N

Y n

∣∣∣∣
µa
µb

 ,

Σaa Σab

Σba Σbb




where the mean vector and covariance matrix may both be partitioned into elements

corresponding to observed and unobserved parts. The probability density function is

a mapping P[Y n|µ,Σ] : Rn → R+. The unnormalised distribution of Y b conditioned

19



on Y a may be easily computed by taking the above density and setting Y a arguments

as fixed to the known values

P[Y b|Y a, µ,Σ] : Rnb → R

P[Y b|Y a, µ,Σ] ∝ P[(Y a, Y b)|µ,Σ]

where the constant of proportionality is from Bayes Rule P[Y a|µa,Σaa]. The normal-

ised density function may be tediously computed using the matrix inversion lemma

and is given by

P[Y b|Y a, µ,Σ] ∼ N(µb|a,Σb|a) (3.4)

µb|a = µb + Σba(Σaa)−1(µa − Y a) (3.5)

Σb|a = Σbb − Σba(Σaa)−1Σab, (3.6)

another multivariate Gaussian. By observing only a subset of dimensions of a vector

Y n, we may “freeze” the known dimensions to their values Y a and see how the rest

are affected. Alternatively, we may sample many Y n
1 , ..., Y

n
k vectors and reject all the

sampled vectors for which the first na dimensions are significantly different from Y a.

The left over samples will all have similar values in the Y a dimensions and the Y b

dimensions will be approximately distributed according to N(µb|a,Σb|a). Thankfully

this process can be done in closed form for multivariate Gaussian distributions.

Next, assume the multivariate Gaussian distribution mean and covariance

come from a Gaussian process mean and covariance function evaluated on a discret-

isation of the input domain. The Y a are associated with Xa, the Y b with Xb and

µa = µ(Xa), Σaa = k(Xa, Xa) and Σab = k(Xa, Xb) and the same for µb,Σbb. Since

Xa and Y a are observed data, they are fixed. However, Xb is not fixed, we can

vary the discretization elements Xb and any discretisation still yields a multivariate

Gaussian for outputs Y b. By using the mean and covariance functions and the above

formula for conditioning, the posterior distribution over outputs Y b at new inputs

20



Xb is given by

P[Y b|Y a, Xa, Xb] ∼ N(µa(Xb), ka(Xb, Xb))

µa(x) = µ(x) + k(x,Xa)(k(Xa, Xa))−1(µ(Xa)− Y a)

ka(x, x′) = k(x, x′)− k(x,Xa)(k(Xa, Xa))−1k(Xa, x′).

Note that when the posterior mean function is evaluated at a past point, Xb =

{xi} ⊂ Xa, the prediction is exactly the corresponding observed value yi,

µa(xi) = µ(xi) + k(xi, Xa)(k(Xa, Xa))−1(Y a − µ(Xa))

= µ(xi) +
(
k(Xa, Xa)

)
i︸ ︷︷ ︸

ith row

(
k(Xa, Xa)

)−1
(Y a − µ(Xa))

= µ(xi) + eᵀi (Y
a − µ(Xa))

= µ(xi) + yi − µ(xi)

= yi

where ei is the ith column of an na × na identity matrix.

3.2.3 Stochastic Function Outputs

However we are interested in stochastic objective functions F (x) = θ(x) + ε where

ε ∼ N(0, σ2
ε ). We can dictate what the vectors Y a and Y b represent. All we need

to do is state how the concatenated vector (Y a, Y b) is randomly generated then we

may use the conditioning described above in Equation 3.4 to get a posterior over

dimensions Y b. We may set Y a given Xa to be noisy outputs F (Xa) = θ(x) + ε

and we can set Y b to represent the (unobservable) noise-free outputs at Xb, that

is θ(Xb) and therefore (Y a, Y b) = (θ(Xa) + ε, θ(Xb)). So, to encode this we simply

assume that (Y a, Y b) is jointly generated from a multivariate Gaussian whose mean

and covariance come from a mean function, µ(x), and kernel, k(x, x′), evaluated at

the given Xa and Xb, and that only the Y a elements have additional white noise.

21



The vector (Y a, Y b) = (F (Xa), θ(Xb)) has generative Gaussian distribution

P[(F (Xa), θ(Xb))] = N


µ(Xa)

µ(Xb)

 ,

k(Xa, Xa) + Iσ2
ε k(Xa, Xb)

k(Xb, Xa) k(Xb, Xb)


 (3.7)

which when conditioned on the observed dimensions, Y a = F (Xa), we get

P[θ(Xb)|Y a, Xb] ∼ N(µa(Xb), ka(Xb, Xb))

µa(x) = µ(x) + k(x,Xa)
(
k(Xa, Xa) + Iσ2

ε

)−1
(Y a − µ0(Xa)) (3.8)

ka(x, x′) = k(x, x′)− k(x,Xa)
(
k(Xa, Xa) + Iσ2

ε

)−1
k(Xa, x′).

In this case the Gaussian process mean function does not interpolate past evaluations

µa(xi) 6= yi almost surely.

3.2.4 Hyperparameters

The mean function is either set to the mean of data µ(x) = Ȳ a (equivalently

Y a is centered and mean 0 is used) or a constant that is learnt with the other

hyperparameters. In this work we use the former approach. All of the GP parameters

are then Θ = {σ2, l, σ2
ε } which are learnt by maximising log marginal likelihood

logP[Y a|Xa,Θ] = −1

2

(
na log(2π) + log

∣∣k(Xa, Xa;σ2, l) + Iσ2
ε

∣∣
+Y aᵀ (k(Xa, Xa;σ2, l) + Iσ2

ε

)−1
Y a

)

which may be maximised by multi start gradient ascent. An alternative approach

is to sample hyper-parameters from the likelihood and fit multiple GP models to

the data. For each model, the acquisition function is constructed the average of

acquisition functions is used. Murray and Adams [2010], though we do not take this

approach in this work as it is more expensive to compute requiring many calls to the

marginal likelihood which has O(n3
a) computational cost.

22



3.2.5 Multi-Task Gaussian Processes

Given a function with vector valued outputs,

FMT : Rn → Rk

this is often referred to as multi-task learning, particularly if each output of the

vector is over a different domain, e.g. [0, 1] for the first dimension and R for the

second. For Gaussian process regression with real valued outputs and Gaussian noise,

multi-task is identical to a standard scalar valued Gaussian process model with an

augmented input

FS : Rn × {1, ..., k} → R

where FMT (x) = (FS(x, 1), .., FS(x, k)). To use Gaussian process regression as

a function approximator of FS(x), we redefine the augmented domain as X̃ =

Rn × {1, ..., k} and require appropriate mean and kernel functions

µ : X̃ → R

k : X̃ × X̃ → R.

In general, it is possible to perform Gaussian process regression over any domain

given a mean function and a positive semi-definite kernel. The sum of any two

kernels is also positive-semi-definite as is their product allowing to compose more

sophisticated kernels. Below are four valid kernels over the augmented domain

X̃ = [0, 50]× {1, 2, 3}. Randomly generated functions are shown in Figure 3.1.

A. Each task is a totally independent Gaussian process realisation with the same

magnitude and length scale,

k(x, s, x′, s′) = δs,s′σ
2
0 exp

(
− (x−x′)2

2l2

)
.

B. Each task is a weighted average of a common basis set of Gaussian process

realisations, Σ is a positive semi definite matrix

k(x, s, x′, s′) = Σs,s′ exp
(
− (x−x′)2

2l2

)
.

C. Each task is composed of a common Gaussian process realisation and an inde-

23



0 10 20 30 40 50

−
3

−
1

0
1

2
3

A

X

Y

0 10 20 30 40 50

−
3

−
1

0
1

2
3

B

X

Y

0 10 20 30 40 50

−
3

−
1

0
1

2
3

C

X

Y

0 10 20 30 40 50

−
3

−
1

0
1

2
3

D

X

Y

Figure 3.1: Randomly generated function. A, all functions are independent Gaussian
processes. B, each function is a different weighted average of the functions from A.
C, each function is a common GP realisation with a unique offset. D, each function
is a common GP, with unique offset and GP realisation.

24



pendent task specific offset,

k(x, s, x′, s′) = σ2
0 exp

(
− (x−x′)2

2l2

)
+ δs,s′ .

D. Each task is composed of a common Gaussian process realisation and an inde-

pendent task specific realisation and offset,

k(x, s, x′, s′) = σ2
0 exp

(
− (x−x′)2

2l2

)
+ δs,s′ exp

(
− (x−x′)2

2l2
+ δs,s′

)
.

When viewed as a scalar valued Gaussian process over an augmented domain, the

conditioning Equations 3.8 may be used without modification.

3.3 Value of Information for Acquisition Functions

Given only partial data about an uncertain world, a decision maker is required to

make a choice under such uncertainty. Firstly, a Bayesian model allows the decision

maker to make predictions about the world accounting for such uncertainty, i.e. a

posterior distribution over parameters of interest. Secondly, the decision maker has

a loss function that dictates the (negated) quality of a decision for a particular state

of the world, one parameter value. Thirdly by integrating the loss function for one

particular parameter value over the posterior distribution of parameter values yields

the expected loss. Finally, the decision maker can take the decision that minimizes

the expected loss over states of the world. If more information about the world

is collected, the posterior, expected loss and the optimal decision will all change.

The Value of Information is the expected change in the minimum expected loss

due to knowing more about the world. We next give two concrete examples of this

derivation process.

3.3.1 Knowledge Gradient

In the case of Bayesian optimization, we aim to optimize a stochastic function

F : X → R

25



which we assume to be a latent function with white noise F (x) = θ(x) + ε. The

decision to be made is to pick an input xr ∈ X that is predicted optimum. Let

XN = (x1, ..., xN ) and Y N = (y1, ..., yN ) be a dataset of N input-output pairs

DN = {XN , Y N}, the Bayesian “model of the world” is a Gaussian process fitted to

the dataset yielding the posterior distribution over any underlying latent function

output

P[θ(xr)|Dn].

In this thesis, without loss of generality, we focus on maximisation. Given one

particular realization of the function θ(x), the loss function of a decision xr is the

(negative) output of the decision

Loss(xr) = −θ(xr).

Therefore the expected loss is simply the posterior mean,

E[Loss(xr)|Dn] = E[−θ(xr)|Dn] = −µN (xr).

And finally the optimal decision is the xr value that minimises expected loss:

xr = arg min−µN (x) = arg maxµN (x)

and the associated minimum expected loss we define as performance, PN , and is the

peak posterior mean

PN = maxµN (x).

Next, if we have a budget or N function calls, at time n, the dataset Xn, Y n contains

n input-output pairs. The remaining N − n function evaluations still need to be

allocated updating all of the above quantities. The value of information, VoI, is the

update in the final performance to the decision maker,

VoIn(xn+1, ..., xN ) = E[PN − Pn|Dn, xn+1, ..., xN ]

= E[maxµN (x)−maxµn(x)|Dn, xn+1, ..., xN ]

26



where the expectation is over the unobserved random yn+1, ..., yN values whose

multi-variate distribution is given by the Gaussian process

P[yn+1, ..., yN |Dn, xn+1, ..., xN ] =

N



µn(xn+1)

...

µn(xN )

 ,


kn(xn+1, xn+1) + σ2

ε · · · kn(xn+1, xN )

...
. . .

...

kn(xN , xn+1) · · · kn(xN , xN ) + σ2
ε




In many applications, calls to F (x) can only be made sequentially, likewise it is

more efficient to allocate the xn+1 based on the most recent information x1, ..., xn

and y1, ..., yn, and allocate xn+2 given all data up to n+ 1 etc. Also, the value of

information of multi-step look ahead can be very expensive, it requires optimisation

over the whole batch (xn+1, ..., xN ) ∈ X × ...×X and each call requires integration

over yn+1, ..., yN . Therefore, we may write the value of information of looking

one-step ahead, this is known as the Knowledge Gradient acquisition function

KGn(x) = E[max
x′

µn+1(x′)−max
x′′

µn(x′′)|Dn, xn+1]

and this is graphically depicted in Figure 3.2 (L). If we augment the dataset with

a new input-output pair (xn+1, yn+1), the new posterior mean µn+1(x) is easily

computed from µn(x) by taking Equation 3.8 above and performing a simple change

from prior mean and kernel to posterior mean and kernel at time n, an instance of

Bayesian updating

µn+1(x) = µn(x) +
kn(x, xn+1)

kn(xn+1, xn+1) + σ2
ε

(yn+1 − µn(xn+1)) (3.9)

= µn(x) +
kn(x, xn+1)√

kn(xn+1, xn+1) + σ2
ε

yn+1 − µn(xn+1)√
kn(xn+1, xn+1) + σ2

ε

. (3.10)

The predictive distribution of the new output given the next input xn+1, and the

data so far Xn, Y n is given by

yn+1 ∼ N(µn(xn+1), kn(xn+1, xn+1) + σ2
ε )

27



therefore the second term of the above factorisation is the z-score of yn+1 and so we

may write

µn+1(x) = µn(x) + σ̃n(x;xn+1)Z (3.11)

where, at time n, Z ∼ N(0, 1) is unknown and random, σ̃n(x;xn+1) is a deterministic

function of x′ parameterised by xn+1 and is an additive update to µn(x) scaled by

the stochastic Z,

σ̃n(x;xn+1) =
kn(x, xn+1)√

kn(xn+1, xn+1) + σ2
ε

. (3.12)

Therefore we may write Knowledge Gradient as

KGn(x) = E
[
max
x′

µn(x′) + σ̃n(x′;x)Z −max
x′′

µn(x′′)

∣∣∣∣Dn, xn+1

]

There are multiple ways to evaluate this expectation of maximisations and we will

discuss them later in Chapter 5 when we use this form of the acquisition function

for the first time.

3.3.2 Efficient Global Optimization

We follow the above Value of Information with two simple modifications, the function

to be optimized is deterministic and the decision maker can only choose xr from

the history of observations Xn. With these changes, the same derivation procedure

yields the Expected Improvement acquisition function popularised by Jones et al.

[1998a]. Given a dataset Xn, Y n, we fit a Gaussian process model to the dataset to

yield P[θ(x)|Dn], the decision maker loss is again given by −θ(x) and therefore the

expected loss −µn(x). As the decision maker is restricted to xr ∈ X, the optimal

decision is xr = arg maxx∈Xn µn(x) and the one-step value of information is

VoIn(x) = E
[

max
x′∈Xn∪{x′}

µn+1(x′)− max
x′′∈Xn∪{x′′}

µn(x′′)

∣∣∣∣Dn

]
.

This may be simplified to the EI acquisition function as follows. The model assumes

deterministic outputs therefore perfectly interpolates the data and µn(xi) = yi,

28



therefore the performance is

Pn = max
x∈Xn

µn(x)

= max{µn(x1), .., µn(xn)}

= max{y1, .., yn}

= maxY n.

The model also interpolates the new data point too, µn+1(xn+1) = yn+1. Substituting

both terms into the VoIn(x) and using the shorthand ȳn = maxY n yields the EI

acquisition function

EIn(x) = E
[

max
x′∈Xn∪{x}

µn+1(x′)− max
x′′∈Xn∪{x}

µn(x′′)

∣∣∣∣Dn

]
= E[maxY n+1 −maxY n|xn+1 = x]

= E[max{0, yn+1 − ȳn}|xn+1 = x]

= E[max{0, µn(x) +
√
kn(x, x)Z − ȳn}]

= (µn(x)− ȳn) Φ

(
− ȳ

n − µn(x)√
kn(x, x)

)
+
√
kn(x, x)φ

(
ȳn − µn(x)√
kn(x, x)

)

where Z ∼ N(0, 1) is a standard Gaussian random variable, Φ(z) and φ(z) are the

cumulative and density functions of the Gaussian distribution. This is graphically

depicted in Figure 3.2(R).

Note the following two properties of the expected improvement function.

First, EI(x) is non-negative as it is the expectation of a non-negative quantity,

max{0, yn+1 − ȳn} ≥ 0. Second, if the expectation is zero, then max{0, yn+1 − ȳn}

must be zero for all realizations of yn+1 implying kn(x, x) = Var[θ(x)] = 0 (given

µn(x) ≤ ȳn). The second condition means that EI(x) = 0 implies θ(x) is known.

These two properties also hold for the Knowledge Gradient acquisition function;

KG(x) > 0 and KG(x) = 0 where θ(x) is known exactly. As a result, for both

methods that collect data at locations that maximise their acquisition function,

they will converge to learning the true value of θ(x) for all x ∈ X and the true

optimum becomes known xnr = argmax
x∈X

θ(x). The proof is a simple argument by

29



●

●

●

●

●

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2
3

X

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Knowledge Gradient

● data
mean
Pn

new point
new mean
Pn+1

● data
mean
Pn

new data
new mean
new Pn+1

●

●

●

●

●

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2
3

X

Y ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

Expected Improvement

Figure 3.2: Consider evaluating F(50), xn+1 = 50. Left: Knowledge Gradient
computes the average peak over realisations of the new mean. Right: EI computes
the average peak over realisations of the new dataset.

contradiction, if data is sequentially allocated to maxima of KG(x) or EI(x), then

data will never be re-allocated to points for which θ(x) is known as such points are

known minima of KG(x) and EI(x). Hence, at each time step, only unknown θ(x)

points are sampled. Assuming an appropriate differentiable kernel, this conclusion

applies to both continuous and discretised search spaces [Toscano-Palmerin and

Frazier, 2018, Zhang et al., 2019].

There exist problem settings where deriving a myopic acquisition function

using the Value of Information recipe leads to a acquisition function for which the

second property does not hold, KG(x) = 0 or EI(x) = 0 whilst θ(x) is still unknown,

kn(x, x) > 0. This is discussed in Section 3.3.4.

3.3.3 General Derivation Procedure

In the following chapters, we follow the above value of information procedure to

derive myopic one-step look ahead acquisition functions. We use Gaussian processes

for every application and we always assume the expected loss is simply a variant of

the posterior mean of the GP such as
∑

x µ
n(x, a) and the decision maker will always

30



choose arg maxa
∑

x µ
n(x, a) and therefore the performance is maxa

∑
x µ

n(x, a).

Consequently, deriving a value of information procedure only requires specifying the

current performance Pn. By incorporating all of the previous steps into one, the

performance may be viewed as a set function from any given dataset to real values

P : D → R

whereDn, Dn+1 ∈ D is the collection of all possible datasets. In the case of Knowledge

Gradient, this performance function is

PKG(Dn) = max
x

E[θ(x)|Dn]

and for Expected Improvement

PEI(D
n) = maxY n.

After specifying the performance function, the acquisition function is given by

AF(x;Dn) = Eyn+1 [P(Dn+1)|xn+1 = x]− P(Dn)

where Dn+1 = Dn ∪ {(xn+1, yn+1)} is the one-step look ahead dataset, xn+1 is the

argument to the acquisition function, the candidate x to be added to the dataset

and the expectation is over the unknown yn+1. We use the predictive distribution

of yn+1 from the GP model given Dn and xn+1. We also assume that the updated

model will have the same hyperparameters. The performance set function is usually

straightforward given the problem definition and a Gaussian process approximation

of an underlying function. The difficulty comes in evaluating the expectation of the

one-step difference in performance functions.

31



3.3.4 A Failure Case of the Myopic Value of Information Recipe

In Chapter 2.3.4, we discussed maximisation over x ∈ X of a sum of functions

indexed by w ∈W ,

F (x) =
∑
w∈W

f(x,w),

and evaluations on f(x,w) are collected to learn arg maxF (x). Consider the problem

setting of worst-case optimisation where a user aims to maximise the minimum over

a set of functions,

F (x) = min
w∈W

f(x,w).

Let’s assume that both sets X and W are finite sets with no correlation across

outputs, evaluating f(x,w) does not inform f(x′, w′) for (x,w) 6= (x,w). Therefore,

we have an independent prior over outputs P[f(x,w)] for each (x,w) ∈ X × W

(although failure cases exist for the correlated case too). Consider the simplest case

X = {a, b} and W = {u, v}, after n observations we have a posterior with mean

µn(x,w) and the performance is given by

Pn = max
x∈X

min
w∈W

µn(x,w)

= max
{

min{µn(a, u), µn(a, v)},min{µn(b, u), µn(b, v)}
}

Given, (x,w)n+1, the posterior mean µn(x,w) is only updated for the sampled input

pair

µn+1(x,w) =


µn+1(x,w) if(x,w) = (x,w)n+1

µn(x,w) else

Next, let choosing x = b be the best option, that is

min{µn(a, u), µn(a, v)} < min{µn(b, u), µn(b, v)}

and Pn = min{µn(b, u), µn(b, v)}. For the x = a decision, let w = v be the worst

case output min{µn(a, u), µn(a, v)} = µn(a, v). In this case, sampling yn+1 = f(a, u)

32



can only reduce the worst case for choosing x = a,

E[min{µn+1(a, u), µn(a, v)}] ≤ µn(a, v).

and the value of information is zero as follows,

E[Pn+1 − Pn|Dn, (x,w)n+1 = (a, u)]

= E

max

{
min{µn+1(a, u), µn(a, v)}︸ ︷︷ ︸

≤µn(a,v)

, min{µn(b, u), µn(b, v)}
}− Pn

≤ max

{
µn(a, v), min{µn(b, u), µn(b, v)}︸ ︷︷ ︸

dominant term = Pn

}
− Pn

= Pn − Pn

= 0.

The one-step value of information is non-negative for all (x,w), though we haven’t

shown it. However it is also zero for (a, u) while P[f(a, u)|Dn] is still not known.

Regardless of the outcome of the new measurement yn+1 = f(a, u), the decision

maker’s choice will not change, xnr = xn+1
r = b. Hence sampling to maximise myopic

value of information can get stuck and result in failure to converge. Multi-step look

ahead can somewhat alleviate this issue. However in general alternative methods are

required, such as OCBA which allocates according to the posterior distributions and

not the one-step look ahead posterior mean.

33



Chapter 4

Discrete Task Conditional

Ranking and Selection

4.1 Introduction

Given a finite set of tasks, each described by some continuous features, and a finite

set of tools that can be applied to any task, we consider the problem of sampling

to efficiently identify a mapping from the set of tasks to the best tool for each task.

We approach the problem as an extension of ranking and selection problems, where

an experimenter is typically required to find the single best overall tool from a set,

and where best is defined as having the highest expected performance which can

only be inferred via sampling. The main difference of our problem is that we aim to

simultaneously identify the best tool for multiple tasks and there is some correlation

of tool performance across tasks with similar features. This problem is very similar

to contextual multi-armed bandits. However, we are interested in finding the best

tool for each task instead of trying to maximise cumulative reward during sampling

and we assume that the user is free to choose any tool-task pair (or state-action pair,

context-arm pair), the “context” is not an exogenous variable. This problem has

many practical applications, including the following three possible examples.

1. Algorithm selection. For most hard optimization problems, there exist multiple

algorithms. Although some algorithms may work better than others overall,

34



usually different algorithms work best for different problem instances. Thus,

there is the problem of deciding which algorithm to use for which problem

instance, based on features of the problem instance. Smith-Miles [2008] provides

a survey on the algorithm selection problem and Smith-Miles et al. [2014]

perform a case study with graph coloring algorithms.

2. Personalized Medicine. The pharmaceutical industry is currently experiencing

a shift from the one-drug-fits-all paradigm towards personalization, where

therapies are targeted towards particular subgroups of patients. Clinical trials

then not only have to determine whether a drug is effective or not, but also which

drug works best for which type of patient, depending on patient characteristics.

Xu et al. [2014] propose a method to sequentially test treatments on patients

to find patient subgroups in a simulated breast cancer trial.

3. Online marketing. It is easy to deploy several different advertisements and

advertisement formats (banner, video, etc.). A website designer aims to find

the best advertisement for each user without showing too many adverts to

many users and so instead must choose a series of users and adverts to learn

the user-advert mapping that maximizes ad revenue for the website.

We tackle the problem of efficient information collection to find a mapping

from the set of tasks to the set of tools by using Gaussian Process Regression as

a metamodel to predict a tool’s expected performance across task space. We then

propose and empirically compare three such myopic sampling policies, Regional

Expected Value of Improvement (REVI), and two simpler heuristics NEVI and

EVI. The REVI policy maximizes the expected improvement in predicted mapping

performance, accounting for how one sample on one task can influence all the other

tasks. NEVI and EVI are approximations to REVI that are much cheaper to compute

yet still perform well. For a given budget, the three policies sequentially create

sample designs producing mappings that perform significantly better than Latin

Hypercube designs reducing the necessary sampling budget to obtain a desired level

of performance by up to 67% in our experiments.

The chapter is structured as follows. In Section 4.2 the problem and math-

35



ematical framework are laid out, followed in Section 4.3 by the derivation of our

methods. Empirical results on both synthetic benchmarks and a heuristic selection

problem are reported in Section 4.4. We conclude in Section 4.5 with a summary

and some ideas for future work.

4.2 Problem Definition

There exists a finite set of M tasks indexed by t ∈ {1, ...,M} and a set of A alternative

tools indexed by a ∈ {1, ..., A}. Each task t is characterized by D continuous features,

xt ∈ RD. The set of feature vectors for all tasks is denoted X = {x1, ..., xM}. We

can apply a tool a to a task t to obtain a stochastic performance measurement that

is a realization of a random variable Yt,a = ζt,a + εa where ζa ∈ RM is a vector

of M true expected performance values for all tasks for tool a. εa ∼ N(0, σ2
ε,a)

is white noise distributed with known variance which in practice is estimated by

preliminary sampling. The values of ζ1, ..., ζA are assumed to be underlying latent

functions of the task features ζ̃1(x), ..., ζ̃A(x) : RD → R and ζt,a = ζ̃a(xt), however,

they are unknown to the user and must be inferred. We are given a finite budget

of N performance measurements, or samples, to be allocated to the (task, tool)

design space {1, ...,M}×{1, ..., A}, and the goal is to learn a classifier, or a mapping,

S : X → {1, ..., A} from features to the best tool. Given only limited information,

the mapping S(xt) must approximate argmax
a

ζt,a for each xt ∈ X and therefore

maximize the expected portfolio performance summed over all considered tasks:

Portfolio Performance =
M∑
t=1

wtζt,S(xt) (4.1)

where wt are user defined positive weights representing the relative importance of

each task, which we include to allow a user to account for differences between the

distribution of tasks x1, ..., xM ∼ PX [xt] and a desired target distribution PT [xt],

examples are given below. The objective of sampling is the expected portfolio

performance and not the classification error and so we refer to S(x) as a mapping,

as opposed to a classifier. See Figure 4.1 for an illustrative example.

36



●

●

−2 0 2 4 6

−
2

−
1

0
1

2

Example: 50 Tasks, 3 Tools

Task Features X

P
er

fo
rm

an
ce

 Y
●

●

●

●

●

●

a=1
a=2
a=3

S*(x)=1
S*(x)=2
S*(x)=3

● ● ● ●●●●●●●●●●●●●●●●●●
●
●

●
●

●● ●
●

●

●

●

●

●
●●●●●

●
●
●
●
●
●
●
●
●
●
●●●●●●●● ● ● ●

●

●
● ●

●
●

●
●
●
●
●
●
●●●●●●●●●●●●●●● ● ●

●
●

● ● ●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●
●

●

●

●
●●●

●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●

●

●

●
●

●

●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●● ●

●

●

● ● ● ●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●

Figure 4.1: Empty points show tool performance on a given task ζa vs X, solid
points represent the optimal mapping S∗(xt). Each task, x, is a ranking and selection
problem over a ∈ {1, 2, 3} and we desire an optimisation algorithm that can find the
best tool for each task.

In the remainder of this section, we explain in more detail how the applications

mentioned in Section 4.1 are three instances of the same general problem class defined

by the framework above.

In the algorithm case study of Smith-Miles et al. [2014], 8 graph coloring

algorithms and a dataset of 6,948 graphs were considered. After measuring the

number of colors for every algorithm on every instance once (8*6,948 measurements),

the authors extract features of graphs and train a support vector machine to classify

instances based on the density, algebraic connectivity and energy of each graph to

the best algorithm. In the above formulation the number of tasks is M = 6, 948, each

task has features x1, ..., x6948 ∈ R3, and there are A = 8 graph coloring algorithms.

The performance, Yt,a, is the number of colors when running one (possibly stochastic)

algorithm a on a graph with features xi and ζt,a is the expected number of colors if

the same algorithm were applied many times to the same instance. Although Yt,a is

count data and not normally distributed, a log transform may be used, as in Poisson

regression, approximating the count data as log-normal to fit the above assumptions.

37



All graphs are considered equally important and so wt = 1/6948 for all t. A user

aims to find a mapping S(xt) : R3 → {1, ..., 8} that recommends the algorithm that

minimizes the expected number of colors. Given restricted computing resources

a user must carefully choose a sequence of algorithms and problem instances for

measuring performance in order to learn the optimal mapping over the problem

instance distribution.

Xu et al. [2014] simulate a breast cancer trial in which there are M = 300

patients each with 4 biomarkers that are uniformly distributed and measured at

the start of the trial x1, ..., x300 ∈ [−1, 1]4. In their synthetic scenario there are

A = 3 treatments, performance is the presence or not of a response to treatment

Yt,a ∈ {0, 1} therefore ζt,a is the expected frequency of positive responses to treatment

for patient t when given treatment a, although the performance Yt,a may be replaced

by the continuous size of the response itself to fit the above formulation. The trial

organizers must sequentially choose a patient t and a treatment a and then observe

the response Yt,a to learn the optimal partitions of biomarker space. The patients

recruited in the trial may not be representative of the whole patient population

and so weights wt = PT [xt]/PX [xt] may be used as importance sampling weights to

account for the difference in the distribution of biomarkers of patients inside the

trial PX [xt], approximated using kernel density estimates, and the target population

PT [xt]. A clinician aims to find a mapping S : [−1, 1]4 → {drug 1, drug 2, drug 3}

that returns the treatment maximizing the expected response for a patient with

biomarkers x over the whole target population distribution PT [x] whilst sampling

form the trial population x1, ..., x300.

In online advertising, at any one point in time there is a population of M

users logged onto a given website. Various features of each user can be measured,

for example a user’s fraction of time spent on consuming content types such as news,

entertainment and educational content, in which case x1, ..., xM ∈ [0, 1]3. The website

may have a choice of A = 3 possible advertisements, a ∈ {pop-up, banner, video},

to show to any given user i in order to maximize the number of advert clicks (with

a log-transform for count data) or the amount of money spent, Yt,a, in a fixed

measurement time period. ζt,a is then the expected number of clicks or revenue if a

38



user of type xt is shown an advert of type a. Again the weights may be importance

sampling weights accounting for the difference between the current user population

distribution and a desired target population wt = PT [xt]/PX [xt] where the target

population may be the overall long term stationary distribution of users. Given

that the website aims to minimize interruptions of user experience, or because of

bandwidth constraints, it is not desirable to show adverts to all users all the time,

thus the website must carefully choose a sequence of users from the current M

users and adverts to learn a mapping S : [0, 1]3 → {pop-up, banner, video} over the

entire target population PT [x]. It should be relatively straightforward to adapt the

algorithms proposed in our paper to allow the actual pool of users change over time

and to account for sampling multiple tools and tasks simultaneously.

Note that we assume that during learning, the task set is fixed and given.

This is true in many applications. For example, it is not easy to generate addi-

tional problem instances with particular features, or recruit additional patients with

particular features onto a drug testing trial. However, once the mapping has been

constructed, it can be used to predict the best tool for any task in the feature space

(not only the ones used for learning).

4.3 Sampling Methods

In this section, we first introduce a mathematical framework building on the work of

Frazier et al. [2009a], followed by three novel myopic sampling policies.

Consider a state during sampling after which n samples have been collected.

We denote the sequence of sampled tasks (t1, ..., tn), tools (a1, ..., an) and the sequence

of pairs (t, a)1, ..., (t, a)n is written as {(t, a)}n1 . The vector of n corresponding

performance measurements is denoted (y1, ..., yn) = Y n. For a given tool, let na be

the number of samples allocated to tool a, denote the tasks that have been measured

as Tna = {ti|ai = a, i = 1, ..., n} and the subset of performance measurements as

Y n
a ⊆ Y n and feature values Xn

a ⊆ Xn. We next define the filtration, Fn, to be the

sigma algebra generated by the tasks, tools and performance measurements sampled

so far Fn = σ{(t1, a1, y1), ..., (tn, an, yn)}.

39



For each tool, we treat the unknown true performance vectors ζa ∈ RM as

Bayesian random variables denoted by θa ∈ RM . Starting with a multivariate normal

prior

P[θa] ∼ N (µ0
a,Σ

0
a)

with parameters informed by the features µ0
a = µa(X) ∈ RM , Σ0

a = ka(X,X) ∈

RM×M . We have independent and identically distributed Gaussian observation noise

with mean that is the ti element of θai , Gaussian likelihood

P[yi|θ1, ..., θA, t
i, ai] = N(y|θai,ti , σ2

ε,ai),

and therefore the posterior for a given θa after n samples is also multivariate Gaussian

P[θa|Fn] ∼ N (µna ,Σ
n
a)

where µna denotes the posterior mean after n samples and likewise for Σn
a .

As described in Chapter 3.2, by using the Matrix Inversion Lemma [Hager,

1989] to condition the prior on the data points collected so far, the posterior mean

and covariance for a single tool a, P[θa|Fn] = N (µna ,Σ
n
a), are then given by the

following matrix equations:

µna = µ0
a + (kna )ᵀ(Kn

a )−1(Y n
a − µa(Xn

a )), (4.2)

Σn
a = Σ0

a − (kna )ᵀ(Kn
a )−1kna , (4.3)

where kna = [Σ0
a]Tna = ka(X,X

n
a ) is the columns of the prior matrix with indices Tna

which is also the kernel evaluated between all tasks and samples tasks for tool a.

Similarly for the Kn
a matrix,

Kn
a =

[
Σ0
a

]
Tna ,T

n
a

+ Iσ2
ε,a = ka(X

n
a , X

n
a ) + Iσ2

ε,a

is the prior matrix with both rows and columns with indices Tna (or the kernel

evaluated at observed features) with an added nosie matrix.

True exact vectors of ζ1, ..., ζA are unknown to the experimenter, therefore

40



the mapping is constructed by selecting the tool, a, for each task t with the highest

predicted performance,

Sn(t) = argmax
a

µnt,a.

To derive a Value of Information based algorithm, we first require a measure of

current performance. Using the Bayesian mode, the predicted mapping performance

at time n is given by

Pn =
M∑
t=1

wtµ
n
t,Sn(t) =

M∑
t=1

wt max
a

µnt,a. (4.4)

We aim to iteratively maximize improvement in the above predicted performance in

as a measurable surrogate for maximising true performance Equation 4.1.

In order to maximise Equation 4.4, we require a measure of how much a new

performance measurement from a given (task, tool) pair will affect the predicted

performance, and we aim to derive E[Pn+1|Fn, (t, a)n+1]. The updated predicted

performance depends on the posterior mean vectors µn+1
1 , ..., µn+1

A and so we derive

a one step look-ahead recursion formula for the posterior parameters. At a given

stage during sampling, n, measuring the performance of tool an+1 applied to task

tn+1 generates the next performance value yn+1. By concatenating the appropriate

values to form the updated matrices kn+1
an+1 ,K

n+1
an+1 and Y n+1

an+1 , one can use the Matrix

Inversion Lemma again for the updated inverse (Kn+1
an+1)−1. The following recursion

(which is also found in Frazier et al. [2009a]) is derived and it does not contain the

(Kn
a )−1 matrix inversion, tn+1 has temporarily been replaced by t for brevity:

µn+1
a =


µna +

yn+1−µnt,a
Σntt,a+σ2

ε,a
Σn
t,a a = an+1

µna otherwise

(4.5)

Σn+1
a =


Σn
a −

Σnt,aΣnt,a
ᵀ

Σntt,a+σ2
ε,a

a = an+1

Σn
a otherwise

(4.6)

where Σn
t,a denotes the tth column of the symmetric matrix Σn

a . Note that the Σn
a

matrices only depend on the sampling decisions {(t, a)}n1 . At time n, the scalar yn+1

41



and vector µn+1
an+1 are not Fn measurable. However, given the posterior predictive

distribution of the new observation

P[yn+1|Fn, (t, a)n+1 = (t, a)] = N(θt,a, σ
2
ε,a) = N(µnt ,Σ

n
tt,a + σ2

a,ε),

the posterior predictive distribution of µn+1
an+1 is calculated using the above recursion

formula. For a given standard normal random variable Z ∼ N(0, 1) we have the

following (for clarity we have dropped the subscript a in the following two formulae):

µn+1 = µn +
(µnt +

√
Σn
tt + σ2

εZ)− µnt
Σn
tt + σ2

ε

Σn
t

= µn +
Σn
t√

Σn
tt + σ2

ε

Z.

And so we define the vector valued function σ̃n : {1, ..,M} × {1, .., A} → RM with

entries

σ̃n(t, a) =
Σn
t,a√

Σn
tt,a + σ2

ε,a

(4.7)

which gives the deterministic additive update to the posterior mean vector which is

scaled by the stochastic Z. Therefore, when conditioned on Fn and the next (task,

tool) pair,

µn+1
a ∼ N (µna , σ̃

n(t, a)σ̃n(t, a)ᵀ) ,

Σn+1
a = Σn

a − σ̃n(t, a)σ̃n(t, a)ᵀ,

where the distribution of the new posterior mean for the jth task caused by a new

sample for the tth task is given by µn+1
j,a ∼ N(µnj,a, σ̃

n
j (t, a)2). With a predictive dis-

tribution for the posterior mean after a new sample, we can calculate the expectation

of predicted mapping performance after the next sample E[Pn+1|Fn, (t, a)n+1]. We

now use this to define three sampling policies.

42



4.3.1 Regional Expected Value of Improvement Policy

We define the Regional Expected Value of Improvement (REVI) of a new sample

at task t and tool a as the expectation of improvement in predicted mapping

performance:

REVIn(t, a) = E
[
Pn+1 − Pn

∣∣∣∣Fn, (t, a)n+1 = (t, a)

]
, (4.8)

and the formula may be computed analytically:

REVIn(t, a) = E

 M∑
j=1

wjmax
b
µn+1
j,b

∣∣∣∣Fn, (t, a)n+1 = (t, a)

− M∑
j=1

wjmax
b
µnj,b (4.9)

=
∑
j

wjE
[
max{0,−|µnj,a −max

b6=a
µnj,b|+ σ̃nj (t, a)Z}

]
(4.10)

=
∑
j

wjh(∆n
j,a, σ̃

n
j (t, a)), (4.11)

where the intermediate steps between Equations (4.9) and (4.10) are provided in

the online appendix, ∆n
j,a = |µnj,a −max

b 6=a
µnj,b| and the function h : R× R→ R is the

well-known EI function derived from the truncated normal distribution of Z:

h(∆, σ) = |σ|φ(∆/|σ|)−∆Φ(−∆/|σ|), (4.12)

where φ and Φ are standard normal density and distribution functions, respectively.

In this case |σ| is necessary because σ̃nj (t, a) may be negative and only the magnitude

is necessary by the symmetry of the normal distribution. At a given stage during

sampling, under the REVI policy, the next sample is allocated to the (task, tool)

pair that satisfies:

(t, a)n+1 = argmax REVIn(t, a) (4.13)

which is simply maximized by full inspection. The REVI sampling policy allocates

each sample to maximize the expected improvement in the predicted mapping per-

formance and thus is myopically optimal by construction. It is also asymptomatically

optimal, meaning that given an infinite sampling budget, the policy will always

43



find the true best tool for each task and find the mapping that maximizes the true

mapping performance. This is because the expected improvement of sampling a (task,

tool) pair decreases, on average, towards zero as more samples are allocated and

thus any unsampled (task, tool) pair eventually becomes the (task, tool) pair that

maximizes regional expected improvement and is chosen for sampling. Therefore, as

the budget approaches infinity, all (task,tool) pairs are sampled infinitely often and

by the law of large numbers, posterior distributions θ1, ..., θA become point masses

at the true values ζ1, ..., ζA:

Theorem 4.3.1 When sampling according to the REVI policy, as the budget goes

to infinity, N →∞, the sequence of mappings converges almost surely to SN (xt) =

argmax
a

ζt,a for all t.

A proof of Theorem 4.1 can be found in the online appendix where we also

provide a Dynamic Programming formulation for this problem. A bound on the sub

optimality gap between the surrogate objective of an optimal policy and the REVI

policy for finite budgets can also be calculated and is simply the largest possible

sum of the future additive updates to posterior means which is finite as N tends to

infinity.

Theorem 4.3.2 When sampling according to the REVI policy, the difference in the

surrogate objective between optimal sampling and REVI sampling is bounded above by

max
π

E[PN |Fn, π]− E[PN |Fn, REV I] 6 max
(t,a)N−1

n+1

N−2∑
k=n

√
2π

M∑
j=1

wj |σ̃kj (tk+1, ak+1)|

(4.14)

where π is the set of all possible future sampling sequences {(t, a)}Nn+1 and where

σ̃k(t, a) for k > n may be calculated deterministically given {(t, a)l}kl=0 only as it

does not depend on the stochastic observations Yt,a.

The REVI policy allocates samples based on a trade-off between three consid-

erations. Priority is given to (task, tool) pairs which have large posterior variance,

low difference in posterior means between the selected tool and best of the other tools,

and tasks whose performance is highly correlated to many other tasks. When using

44



the squared exponential kernel for the Gaussian process, highly correlated tasks have

similar features hence the REVI policy gives sampling priority to tasks in task-dense

regions of feature space. From an alternative view, the REVI policy de-prioritizes

sampling of tasks with outlying features for which improving the mapping will not

significantly contribute to total predicted performance. It is for this reason we give

this policy the name of Regional Expected Value of Improvement. Figure 4.2 provides

an example comprising two tools and 50 equally weighted tasks with features in R

and Gaussian Processes with the squared exponential kernel. One can see that the

REVI function is larger where tasks are dense and where posterior means are close

and variance is large, i.e., where there is large uncertainty about which tool is the

best across many tasks.

Complete computation of REVIn(t, a) for all (t, a) requires M2A function

calls to h(∆, σ) and also requires the entire matrices Σn
1 , ...,Σ

n
A and all evaluations

of σ̃n(t, a) which each have an M2A memory requirement. This can be prohibitively

expensive in scenarios with many tasks where M is large. The following two policies

make simplifying assumptions that reduce this computational complexity.

4.3.2 Noisy Expected Value of Improvement Policy

The Noisy Expected Value Improvement (NEVI) policy assumes that the (task, tool)

pair that maximizes the expected improvement in a tool’s predicted performance

on the selected task also maximizes the expected improvement in the predicted

mapping performance. It would therefore be possible to approximate the sum in

Equation (4.9) by taking only the tth term such that the computational complexity

is reduced to O(MA). Intuitively, the NEVI policy neglects the impact the sample

would have on the predicted performance of other correlated tasks, neglecting the

task density.

We define the Noisy Expected Value of Improvement of a new sample at task

t and tool a as the expected improvement in tool performance for the sampled task

45



alone:

NEVIn(t, a) = wt E
[
max
b
µn+1
t,b −max

b
µni,b

∣∣∣∣Fn, an+1 = a

]
(4.15)

= wt h(∆n
t,a, σ̃

n
t (t, a)), (4.16)

and the next sample is determined by maximizing the above improvement:

(t, a)n+1 = arg max NEVIn(t, a) (4.17)

which is also optimized by inspection. The NEVI policy allocates samples to (task,

tool) pairs based on a trade-off between only two considerations, where the posterior

means of the sampled tool and the best of the other tools is close, and where the

posterior variance is large for the sampled (task, tool) pair. This policy does not

account for the effect a new measurement will have on covarying predictions but it

does account for noisy measurements which is why it is called the Noisy Expected

Value of Improvement policy.

The NEVI policy is not myopically optimal, but like the REVI policy, it is

asymptotically optimal. We show in Section 4.4 that the NEVI and REVI policies

perform comparably in our synthetic benchmarks when task features are uniformly

distributed, whereas REVI outperforms NEVI when task features are clustered.

Figure 4.2 shows how NEVI and REVI differ, for example the NEVI function gives

more priority to tasks with outlying features than REVI. In the special case where

there is no covariance between tasks, the NEVI and REVI policies allocate samples

equally and therefore NEVI is also myopically optimal. In the special case where

there is only one task, the problem reduces to standard ranking and selection, the

REVI and NEVI policies become identical and both are equivalent to the Knowledge

Gradient policy for sampling from A independent alternatives.

Each iteration of the NEVI policy only requires MA function calls to h(∆, σ)

and only the diagonal elements of the Σn
1 , ...,Σ

n
A and single values σ̃i(i, a) which in

total have a memory requirement that scales as MA. Thus the NEVI policy is much

more efficient to compute than REVI for large M . However, one cannot use the

recursion formula given in Equations (4.5) and (4.6). Instead the typically smaller

46



(Kn
a )−1 matrix inversion with computation O(n3

a) is required in Equations (4.2) and

(4.3) and the computational complexity can be reduced by using formula for inverse

of partitioned matrices given in Press et al. [1996] p.77.

4.3.3 Expected Value of Improvement Policy, EVI

In addition to the simplifying assumption of NEVI, the Expected Value of Improve-

ment (EVI) policy also assumes that the noise in performance measurements is

negligible. Therefore σ̃nt (t, a) = Σn
tt,a/

√
Σn
tt,a + σε,a ≈

√
Σn
t,a and µn+1

t,a is equal in

distribution to θt,a. We define the EVI of a new sample at task t and tool a as the

following:

EVIn(t, a) = wt E
[
max{θt,a,max

b6=a
µnt,b} − max

b
µnt,b

∣∣∣∣Fn] (4.18)

= wt h
(

∆n
t,a,
√

Σn
tt,a

)
, (4.19)

and the next sample is given by maximizing the above expected improvement:

(t, a)n+1 = arg max EVIn(t, a). (4.20)

We include this policy for it’s simplicity and we demonstrate numerically

that it performs similarly to the REVI and NEVI policies when tasks are uniformly

distributed and sampling budgets are small. However, like the NEVI policy it loses

some efficiency when tasks are clustered. However, when the variance of the noise for

each tool, σ2
ε,1, ..., σ

2
ε,A, are comparable to the posterior variances for each tool, the

extra simplifying assumption of EVI becomes less applicable and the policy is less

efficient. As sampling budget N increases, posterior variances for all the (task, tool)

pairs tend to zero whilst the noise variance is constant, therefore the EVI policy will

always perform worse than the REVI and NEVI policies as budget increases.

In the example in Figure 4.2, NEVI and EVI are relatively similar and both

have peaks for the same (task, tool) pair.

When performance measurements are deterministic (σε,a = 0 for all a) the

EVI and NEVI policies allocate samples identically. Despite the added simplification,

47



the EVI policy is also asymptotically optimal. This policy requires MA function

calls to h(∆, σ) and the only diagonal elements of the posterior covariance matrices.

It does not require computation or storage of σ̃n(t, a). We include it for its simplicity

and similarity to the expected improvement of the EGO algorithm that measures how

much a normally distributed new sample will improve upon a current best sample,

in this case it is measuring how much the normally distributed prediction of one tool

θt,a improves upon the other tools µnt,b where b 6= a.

2 Tools, 50 Tasks

Figure 4.2: In all plots the x-axis is the single feature of the 50 tasks, xt ∈ R. Top:
the Gaussian Processes for two tools after 4 performance measurements (large points)
(xt1 , y

1), ..., (xt4 , y
4) colored according to tool, and posterior mean performance for

50 tasks (small points) (xt, µ
4
t,a) with confidence intervals. Below: REVI4(t, a),

NEVI4(t, a) and EVI4(t, a) plotted against xt for both tools where all tasks have
equal weight. REVI is high where task density is high, posterior means are close and
posterior variance is large. NEVI and EVI don’t account for task density therefore
give relatively larger value to the outlying tasks.

48



4.4 Numerical Experiments

In order to test the methods empirically, we perform two experiments. First we

create a dataset based upon the case study performed by Smith-Miles et al. [2014]

and second use a dataset of performance measurements of scheduling heuristics over

a range of factory conditions.

4.4.1 Synthetic Experiments Setup

Given M = 6, 948 graphs to be coloured and A = 8 different coloring algorithms,

Smith-Miles et al. [2014] ran all algorithms on all instances and constructed a

support vector machine (mapping) from graph features X ⊂ R2 to best algorithm

{1, ..., 8}. The support vector used a Gaussian kernel with length scale of the kernel

was approximately 1/5 of the spread of the instances. We synthesize data based

on these observations. We create two artificial data sets of M = 500 tasks with

all equal weights, wt = 1 for all i ∈ {1, ..., 500}. The first set, the uniform case

XU , has feature values in the unit square xt ∈ (0, 1)2 sampled from the uniform

distribution. The second set of tasks, the bimodal case XB, is composed of points

in R2 where 250 of the xt values are distributed according to a bivariate normal

distribution N ((0, 0), I0.1252) and the remaining 250 points are distributed according

to N ((0.5, 0), I0.1252). The points form two circular clusters whose centers are 4

standard deviations apart, the task distributions are plotted in Figures 4.3 (a) and

(d). We use these two distributions to emphasize the differences between the REVI

policy that accounts for the task correlation and the NEVI and EVI policies that do

not.

We perform experiments with A = 3, 5 and 8 tools. For each experiment in

each set of tasks, we generate 8 vectors of true performance values, ζ1, . . . , ζ8 ∈ R500,

and use only the first 3 or first 5 when A = 3, 5. Each performance vector, ζa,

was randomly generated by sampling from a Gaussian Process prior over the task

features with a squared exponential kernel, ζ ∼ N (0,Σ) where Σij = σ0exp(−D(xt−

xj , l1, l2)/2) and D(xt−xj , l1, l2) = (xi,1−xj,1)2/l21 +(xi,2−xj,2)2/l22. The parameters

for the Gaussian Process generating the data were σ0 = 1, and l1 = l2 = 0.1, the same

49



hyperparameters were used for all generated data and both task sets. The variance

of the added noise was set to σ2
ε,a = 1/102 for all tools, and noise is independently

and identically distributed for each sample. Figures 4.3 (b) and (e) show surface

plots of the one of the sets of generated latent functions when A = 3.

We initialize each sampling procedure with n0 = 20 measurements per tool,

10 per dimension as recommended by Jones et al. [1998a], allocated to tasks by

a Latin Hypercube Design described in Section 4.4.2. After the initialization, a

Gaussian Process computing µ20
1 , ..., µ

20
A and Σ20

1 , ...,Σ
20
A . We separately apply REVI,

NEVI and EVI sequential policies until the budget of N = 300, 500, 800 has been

consumed for experiments with 3, 5 and 8 tools respectively. For comparison we

also construct mappings using samples allocated by Latin Hypercube Designs with

equivalent budgets N = 20A to N = 100A.

All reported results are averaged over 400 replications, with 400 different

sets of performance vectors, 400 unique initial LHC designs and random number

streams for the noise. At each stage during sampling, the mapping is constructed by

choosing the highest predicted tool for each task, S(xt) = argmax
a

µnt,a, and the true

opportunity cost of the mapping is measured,

OC =
∑
t

max
a

ζt,a − ζt,Sn(t).

We repeat each experiment 400 times and report the empirical average opportunity

cost, EOC, in Figure 4.4. Table 4.1 reports the final average Opportunity Cost with

standard errors.

4.4.2 Mapping based on Latin Hypercube Design

Given a sampling budget that is a multiple of A, we allocate NLHD = N/A samples

to each tool. NLHD tasks are chosen from the set of 500 by a Latin Hypercube

applied to the ranks of the sorted feature values X ⊂ R2. This makes no difference

for XU as the ranks and feature values are both uniformly distributed. However for

XB, an LHD applied to the feature values would undersample task dense regions

and oversample sparse regions. Applying the LHD to the ranks results in hypercube

50



JHelp

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

Feature 1

(a)

F
ea

tu
re

2

Feature 1

(b)

F
ea

tu
re

2

0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

Feature 1

(c)

F
ea

tu
re

2

Uniform Task Features

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.2

0.
0

0.
2

0.
4

Feature 1

(d)

F
ea

tu
re

2

Feature 1

(e)

F
ea

tu
re

2

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.2

0.
0

0.
2

0
.4

Feature 1

(f)
F
ea

tu
re

2

Bimodal Task Features

1

JHelp

0.2 0.4 0.6 0.8

0
.2

0.
4

0.
6

0.
8

Feature 1

(a)

F
ea

tu
re

2

Feature 1

(b)

F
ea

tu
re

2

0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

Feature 1

(c)

F
ea

tu
re

2

Uniform Task Features

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.2

0.
0

0.
2

0
.4

Feature 1

(d)

F
ea

tu
re

2

Feature 1

(e)

F
ea

tu
re

2

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.2

0
.0

0
.2

0
.4

Feature 1

(f)

F
ea

tu
re

2

Bimodal Task Features

1

JHelp

0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

Feature 1

(a)

F
ea

tu
re

2

Feature 1

(b)

F
ea

tu
re

2

0.2 0.4 0.6 0.8

0.
2

0
.4

0
.6

0
.8

Feature 1

(c)

F
ea

tu
re

2

Uniform Task Features

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.2

0.
0

0.
2

0.
4

Feature 1

(d)

F
ea

tu
re

2

Feature 1

(e)

F
ea

tu
re

2

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.2

0.
0

0.
2

0.
4

Feature 1

(f)

F
ea

tu
re

2

Bimodal Task Features

1

JHelp

0.2 0.4 0.6 0.8
0.

2
0.

4
0.

6
0.

8

Feature 1

(a)

F
ea

tu
re

2

Feature 1

(b)

F
ea

tu
re

2

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

Feature 1

(c)

F
ea

tu
re

2

Uniform Task Features

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.2

0.
0

0.
2

0.
4

Feature 1

(d)

F
ea

tu
re

2

Feature 1

(e)

F
ea

tu
re

2

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.2

0.
0

0.
2

0.
4

Feature 1

(f)

F
ea

tu
re

2

Bimodal Task Features

1

JHelp

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

Feature 1

(a)

F
ea

tu
re

2

Feature 1

(b)

F
ea

tu
re

2

0.2 0.4 0.6 0.8

0.
2

0
.4

0.
6

0
.8

Feature 1

(c)

F
ea

tu
re

2

Uniform Task Features

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.2

0
.0

0.
2

0.
4

Feature 1

(d)

F
ea

tu
re

2

Feature 1

(e)

F
ea

tu
re

2

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.2

0.
0

0.
2

0
.4

Feature 1

(f)

F
ea

tu
re

2

Bimodal Task Features

1

JHelp

0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

Feature 1

(a)

F
ea

tu
re

2

Feature 1

(b)

F
ea

tu
re

2

0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

Feature 1

(c)

F
ea

tu
re

2

Uniform Task Features

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.2

0.
0

0.
2

0.
4

Feature 1

(d)

F
ea

tu
re

2

Feature 1

(e)

F
ea

tu
re

2

-0.2 0.0 0.2 0.4 0.6 0.8

-0
.6

-0
.2

0.
0

0.
2

0.
4

Feature 1

(f)

F
ea

tu
re

2

Bimodal Task Features

1

Figure 4.3: The upper row is for uniform problem instances and the lower is for
bimodal. Figures (a),(d) show the sets of task features with randomly distributed
values XU (a) and XB (d). (b),(e) show one example of the performance surfaces
(generated by a bicubic spline interpolation) for three tools ζ1, ζ2, ζ3. (c),(f) show the
true optimal mapping from features to best of the three tools S(x) = argmaxaζa,t.

divisions that are narrower/wider in dense/sparse regions. The tasks with a rank

nearest to the Latin Hypercube points are selected to be included in the design.

As with the sequential methods, a Gaussian Process with the squared exponential

kernel is used to predict the expected performance at all tasks. The best predicted

tool is chosen for each task in the mapping and the true opportunity cost is then

measured. A new random design is chosen for every new budget and the performance

predictions are re-calculated, therefore this is not a sequential method.

4.4.3 Results

Figure 4.4 compares the opportunity cost for various budget sizes for different

sampling policies and both task feature distributions. On average, the REVI policy

provides the best mapping for both task distributions and all budget sizes. The NEVI

and EVI policies make the assumption that maximizing the single task expected

improvement also maximizes the global expected mapping improvement. This may

51



Table 4.1: Final Average Opportunity Cost ± std. err. for different sampling policies.
Random is the performance of a mapping that picks a random tool for each task.
Single Best is the performance of the single truly best tool.

Uniform

Tools 3 5 8

Random 427.6 ± 0.06 583.8 ± 0.06 712.3 ± 0.07

Single Best 325.8 ± 0.31 448.4 ± 0.4 542.6 ± 0.46

LHD 15.06 ± 0.31 21.95 ± 0.4 26.44 ± 0.46

EVI 1.87 ± 0.06 2.12 ± 0.06 1.92 ± 0.07

NEVI 1.69 ± 0.05 1.78 ± 0.04 1.54 ± 0.04

REVI 1.61 ± 0.04 1.71 ± 0.04 1.46 ± 0.03

Bimodal

3 5 8

Random 430.3 ± 0.03 583.4 ± 0.03 710.6 ± 0.04

Single Best 272.7 ± 0.23 377 ± 0.24 455 ± 0.25

LHD 10.13 ± 0.23 14.11 ± 0.24 17.1 ± 0.25

EVI 0.8 ± 0.03 0.83 ± 0.03 0.9 ± 0.04

NEVI 0.69 ± 0.02 0.7 ± 0.02 0.68 ± 0.02

REVI 0.63 ± 0.02 0.69 ± 0.02 0.64 ± 0.02

52



Figure 4.4: Opportunity cost of different sampling policies for various budget sizes
averaged over 400 runs. In all plots: pink (dot-dash) is Latin Hypercube, black
(dotted) is EVI, blue (dashed) is NEVI, and red (solid) is REVI. For all budgets,
number of tools and feature distributions, the REVI policy produced the designs
with the lowest opportunity cost on average.

be approximately true in the uniform case where the effects of correlation are similar

for most tasks. However, this assumption is less true in the bimodal case where

there is greater variation in task density and therefore the expected improvement

due to covariance varies more between tasks. In the bimodal case, after the initial

design, we see a divergence in average opportunity cost between the REVI policy

and the NEVI or EVI policies. At the initial stages, NEVI and EVI are more likely

to allocate samples to unsampled outlying tasks providing smaller gains to portfolio

performance, whereas samples allocated by REVI or the Latin Hypercube do account

53



for task density. After the outliers have been sampled, the efficiency of NEVI and

EVI improves.

EVI assumes that the noise variance is negligible compared to the posterior

variance for the (task, tool) pair that maximizes the expected improvement. This

assumption becomes less true as the budget size increases and posterior variance

for even the maximizing (task, tool) pair reduces and noise becomes non-negligible.

Therefore, in all cases, we see a slight divergence in EOC between EVI and NEVI

for large budget sizes.

The final opportunity cost and standard errors are reported in Table 4.1. As

the number of tools increases, the opportunity cost for LHD increases whereas the

sequential policies do not increase, suggesting that the policies given here scale with

the number of tools and budget size much more favorably than the non-sequential

design. In all cases the REVI policy produced the best performing mappings, and all

policies were significantly better than the Latin Hypercube Designs with equivalent

budget.

In the uniform features case, XU , taking the final EOC of latin hypercube

as a baseline level, the REVI policy achieved the same EOC in 49%, 53% and 58%

of the sampling budget for 3, 5, and 8 tools respectively. The bimodal features

experiment was 62%, 65% and 67%, respectively.

4.4.4 The Early/Tardy Machine Scheduling Problem

This dataset comes from a study of scheduling problem structure and heuristic

performance [Smith-Miles et al., 2009] and consists of M = 300 problem instances

and performance measurements for A = 2 two scheduling heuristics. The data was

generated considering a single machine and a queue of jobs each with earliness and

tardiness penalties, a processing time and a due date. The machine processes one

job at a time and a scheduling heuristic determines which and when of the remaining

jobs to process next whenever the machine is free. Processing a job such that it

completes before it’s due date yields an early penalty and a tardiness penalty for jobs

completed after their due dates. The performance is the sum of penalties over the

range of jobs in an instance. A problem instance is a set of 100 randomly generated

54



jobs, with set distributions of the penalties, processing times and due dates. Given

a problem instance of 100 jobs, the features used for prediction were (1) tardiness

factor (TF): the ratio of mean due date and sum total processing time, (2) due date

range factor (DDR): ratio of range of due dates and sum processing time and (3)

penalty ratio (PR): the largest ratio tardy to early penalties in the set of jobs.

The 300 instances were made by setting a desired tardiness factor to one of

6 levels from 0.2 to 1, due date range to one of 5 levels from 0.2 to 1, and penalty

ratio to one of 10 levels from 1 to 10. In total, creating 6× 5× 10 = 300 instances.

The levels are equally spaced therefore problem instances are uniformly distributed.

The two heuristics applied were (1) Earliest Due Date: jobs are sorted by

their due date, and process each job at a time determined using an optimal idle

time insertion algorithm. And (2) Shortest Processing Time: jobs are sorted by

their processing time in ascending order and the same optimal idle time insertion

algorithm. Output values were centred and scaled.

We apply random sampling, NEVI, and REVI. The Gaussian process used

a squared exponential kernel with length scale corresponding to each feature were

set to half the largest value in the range of features, that is 0.5, 0.5, 5 for TF, DDR

and PR respectively. The signal variance parameter was set to 1 (dataset Y values

are scaled and centered), and the noise varaince set to 0.0001, or 1/100th of the

signal variance. All methods are initialized with n0 = 20 samples per algorithm and

sequential allocation is applied up to N = 100 samples. We record the opportunity

cost as before and results are plotted in Figure 4.5.

As in the synthetic experiments, REVI converges fastest followed by NEVI

and then uniform sampling. The distribution of tasks is uniform and equally

spaced therefore there is less advantage to using REVI. To achieve the same level of

opportunity cost as random sampling with 100 points, NEVI used 48 points while

REVI used 46 points, saving 52% and 54% respectively.

55



●

●

20 40 60 80 100

1e
−

04
1e

−
02

1e
+

00

Early/Tardy Scheduling Dataset

N

O
C

LHC
NEVI
REVI

Figure 4.5: We apply REVI and NEVI and uniform random sampling. Shaded
regions show two standard errors.

4.5 Conclusion and Future Work

In this article, we extended the typical ranking and selection problem such that

the performance of an alternative/tool may be described as a function over some

input feature space, and the goal is to efficiently learn which tool performs best for

each of a given set of tasks characterized by points in feature space. This has many

applications, including algorithm selection, where we are given a set of problem

instances and would like to learn which algorithm is best for each problem instance,

or in personalized medicine where one must efficiently identify a mapping from

patient characteristics to most effective treatment.

We proposed the Regional Expected Value of Improvement (REVI) policy

which samples in a way that maximizes the expected increase in predicted performance

over all the tasks. This method is myopically optimal by construction and also

asymptotically optimal. We also proposed the NEVI and EVI sampling strategies

that make some simplifying assumptions and no longer have the myopic optimality

property, however they reduce the computational complexity and memory requirement

and performed significantly better than Latin Hypercube Design in our experiments.

In the next chapter, we consider the case where the task features are continuous

56



and free to be chosen by the algorithm.

57



Chapter 5

Continuous Task Conditional

Ranking and Selection

5.1 Introduction

In this chapter we extend the work of the previous chapter by allowing the set of

tasks to be continuous. The summation over tasks is now an integral over tasks

that must be approximated. We consider a simple Monte-Carlo approach with the

aim of minimizing computational overhead trading off bias in the estimated value of

information. We also compare to another method for the same problem and find

significantly faster optimization with little added computational cost.

Unlike in the previous chapter where it was assumed that generating new

problem instances with exact features cannot be freely created, e.g. choosing patients

is limited to those available a clinical trial, bespoke problem instances with exact

features are not easily created on demand. However, as with simulation optimization

with input uncertainty, many simulators have calibration settings and the settings

are free to be chosen. A user may desire the bespoke best input for each possible

parameter setting, instead of the single best input averaged over settings.

58



5.2 Problem Definition

There exists a continuous distribution of problem instances with features x ∈ X ⊂

RD, and the distribution P[x] of instances in the feature space is known. There

exists a discrete set of alternatives A. Executing a given alternative a ∈ A on

a given problem instance x ∈ X yields a stochastic performance measurement

Ya(x) = f(a, x) = θa(x) + ε where θa(x) : RD → R is a deterministic latent function

and ε ∼ N(0, σε,a) is independent and identically distributed noise with known

variance (which in practice is measured). The objective of the user is to find a

classifier, or mapping, from problem instance to the best alternative S(x) : X → A

that approximates S∗(x) = argmax
a

θa(x) given a finite budget of N performance

measurements. The aim is to find a mapping that maximizes the overall expected

performance across all problem instances

True Performance = F =

∫
X
θS(x)(x)P[x]dx. (5.1)

Individual performance measurements may be collected sequentially so that

after n measurements the user may determine the alternative and problem instance

for the (n+ 1)th sample.

If there was only a single problem instance, the problem reduces to finding

the alternative a with the highest θa, a standard ranking and selection problem. The

formulation above extends ranking and selection to a continuous range of correlated

ranking and selection problems. The distribution of problems P[x] ensures that

frequent problems (high P[x]) contribute to performance more than rare problems

(low P[x]) and as such a user would prefer to have a more accurate mapping S(x) for

common problems. We refer to P[x] as the problem instance density however, without

loss of generality, any user defined weight function, W (x), can be incorporated to

give priority to particular instances x.

59



5.3 Sampling Methods

We propose to use independent Gaussian process regression models for each a to

predict expected performance θa(x) given instance features x.

Given a dataset of (instance, alternative, performance) triplets (x1, a1, y1), .., (xn, an, yn),

we define the subset of (instance, performance) pairs associated with alternative a

as Xn
a , Y n

a . We define the sigma algebra generated by the data as Fn that defines

the sequence of filtrations used to condition the distributions of θ1(x), ..., θA(x) on

the data. For a single alternative a, a user defines prior mean and covariance func-

tions µ0
a(x), k0

a(x, x
′). After observing data the posterior distribution of θa(x), the

Gaussian processes Regression, is given by

E[θa(x)|Fn] = µ0
a(x) + k0

a(x,X
n
a )
(
k0
a(X

n
a , X

n
a ) + Iσ2

aε

)−1
(Y n
a − µ0(Xn

a )), (5.2)

Cov[θa(x), θa(x
′)|Fn] = k0

a(x, x
′)− k0

a(x,X
n
a )
(
k0
a(X

n
a , X

n
a ) + Iσ2

aε

)−1
k0
a(X

n
a , x

′),

(5.3)

where k0
a(X

n
a , X

n
a ) is the n× n matrix with elements determined by evaluating the

prior covariance function between all possible pairs of elements in Xn
a and I is the

n×n identity matrix. We can then construct a mapping for any instance x by taking

the alternative with the best predicted performance

S(x) = argmax
a

µna(x)

and the model estimate of performance, Pn, of such a mapping is computed by

Pn =

∫
X
µnS(x)(x)P[x]dx =

∫
X

max
a

µna(x)P[x]dx (5.4)

which we aim to optimize as a surrogate for optimizing F . However this cannot

be written analytically for arbitrary P[x], we will discuss approximations below in

Section 5.3.2. Given the performance prediction, the Value of Information in this

60



application is given by

I(x, a) (5.5)

= Eyn+1 [Pn+1 − Pn]

= Eyn+1

[∫
X

(
max
a′

µn+1
a′ (x)−max

a′′
µna′′(x)

)
P[x]dx

∣∣Fn, (x, a)n+1 = (x, a)

]
=

∫
X

(
Eyn+1

[
max
a′

µn+1
a′ (x)−max

a′′
µna′′(x)

∣∣Fn, (x, a)n+1 = (x, a)

])
P[x]dx

and we refer to I(x, a) as the improvement. At time n, µna(x) is known, for a

given (x, a)n+1 the Gaussian process gives a predictive distribution of yn+1 thus

the statistical distribution of µn+1
a (x), Pn+1 and the expectation I(x, a) can be

calculated, we next derive these distributions.

Given only the n samples and the user’s choice of (x, a)n+1 = (x, a), the prior

predictive distribution of the next observation is

yn+1 ∼ N(θa(x), σ2
a,ε) = N(µna(x), kna (x, x) + σ2

a,ε) (5.6)

Equation 5.2 gives the formula for the current posterior mean after n samples,

the formula for the posterior after one sample allocated to alternative a is

E[θa(x)|F1] = µ0
a(x) +

k0
a(x, x

1
a)

k0
a(x

1
a, x

1
a) + σ2

aε

(y1
a − µ0(x1)). (5.7)

Replacing µ0
a(x) and µ1

a(x) with µna(x) and µn+1
a (x), and the same for covariances,

yields a consistent updating formula for the posterior mean. For each new observed

yn+1, only the sampled alternative an+1 is changed,

E[θa(x)|Fn+1] = µn+1
a (x) =


µna(x) + kna (x,xn+1

a )

kna (xn+1
a ,xn+1

a )+σ2
aε

(yn+1
a − µn(xn+1)) a = an+1

µna(x) a 6= an+1

(5.8)

Combining the distribution of yn+1 with the updating formula for the mean yields

61



the predictive distribution

µn+1
a (x) = µna(x) + σ̃na (x;xn+1)Z (5.9)

where Z ∼ N(0, 1) is the stochastic z-score of yn+1 value on its predictive distribution

and

σ̃na (x;xn+1) =
kna (x, xn+1)√

kna (xn+1, xn+1) + σ2
a,ε

(5.10)

is a deterministic function of x, parametrized by xn+1, that is an additive update to

the posterior mean caused by the new sample and the size of the update is scaled

by the stochastic Z. The improvement I(x, a) is an integral over all x ∈ X. Next,

we calculate the improvement for a single instance x in the integral due to the new

sample (xn+1, an+1, yn+1). Given instance x, we define the best predicted alternative

as maxa µa(x) = µn(1)(x) and for the following equation we drop (x). The expected

improvement in estimated performance is given by the integrand of Equation 5.5

E
[

max
a′

µn+1
a′ − µ

n
(1)

]
= E

[
max

{
max

a′ 6=an+1
µna′ − µn(1), µ

n
an+1 − µn(1) + Zσ̃an+1

}]

=


E[max{∆a, Zσ̃a}] an+1 = (1)

E[max{0,∆a + Zσ̃a}] an+1 6= (1)

= ∆aΦ
(
∆a/σ̃a

)
− σ̃φ

(
∆a/σ̃a

)
where ∆a = −|µna(x)−maxa6=an+1 µna(x)|, σ̃a = σ̃na (x, xn+1) and φ(x) and Φ(x) are

the standard normal density and cumulative functions respectively and is the EI

acquisition function. Here, we are measuring the expected improvement in the mean

of one Gaussian process over the mean of other independent Gaussian processes.

Finally the improvement across all x ∈ X is the integral over x and yn+1,

I(x, a) =

∫
x′∈X

(
∆a(x

′)Φ
(
∆a(x

′)/σ̃na (x′, x)
)
− σ̃na (x′, x)φ

(
∆a(x

′)/σ̃na (x′, x)
))

P[x′]dx′.

In the following subsections, we propose several sampling policies for determining

xn+1 and an+1 based on the above value of information calculation.

62



5.3.1 Local Expected Value of Improvement

As a cheap simple heuristic for maximizing I(x, a) we propose the Local Expec-

ted Value of Improvement (LEVI) procedure which determines the next (instance,

alternative) pair to sample based on the improvement that the sampled instance

alone contributes to the global improvement I(x, a). The LEVI method allocates

the sample to maximize the argument to the VoI integral:

LEVI(x, a) = E
[

max
a′

µn+1
a′ (x)−max

a′′
µna′′(x)

]
P[x]

=

(
∆a(x)Φ(∆a(x)/σ̃a(x;x))− σ̃a(x)φ(∆a(x)/σ̃a(x;x))

)
P[x]

The LEVI method treats x as a single ranking and selection problem and samples

the single problem that has the joint largest improvement and probability P[x]. See

Figure 5.1 for an illustration. It tends to allocate a sample to (instance, alternative)

pairs for which the difference in prediction between the chosen alternative and the

best alternative, ∆a(x) is small, where the possible change in prediction, σ̃a(x;x), is

high and where the instance density, P[x], is high. Let na be the number of the n

samples so far allocated to alternative a. Each call to LEVI(x, a) requires a call to

all posterior means µn1 (x), ..., µnA(x) which have complexity O(n1), .., O(nA) and one

call to the posterior covariance kna (x, x) which has complexity O(n2
a). This leading

complexity is equivalent to one call for the EGO expected improvement, however for

this problem the acquisition function must be optimized once for each alternative in

order to allocate a single sample. Optimization of LEVI(x, a) can be done by many

methods and in Section 5.4 we use the squared exponential kernel that gives smooth

predictions and Nelder-Mead algorithm with multiple starts.

When allocating samples according to LEVI, given an infinite sampling budget

the true optimal mapping S∗(x) will be determined perfectly.

5.3.2 Regional Expected Value of Improvement

The Regional Expected Value of Improvement (REVI) sampling procedure determines

the next (instance, alternative) pair to sample based on a Monte-Carlo estimate of

the global improvement I(x, a) and reduces to the REVI method of the previous

63



Chapter when tasks are discrete. We use a Monte-Carlo integral over a fixed set

of NX instances, XMC = {x1, ..., xNX}, that are randomly distributed according to

P[x], the integral becomes

I(x, a) ≈ Î(x, a) (5.11)

=
1

NX

∑
xi∈XMC

E
[

max
a

µn+1
a (xi)−max

a′
µna′(xi)

]
=

1

NX

∑
xi∈XMC

∆a(xi)Φ(∆a(xi)/σ̃a(xi;x))− σ̃a(xi;x)φ(∆a(xi)/σ̃a(xi;x)).

The above integral Î(x, a) gives an estimate of the total improvement I(x, a).

LEVI(x, a) gives the single point improvement therefore LEVI(x, a)VX is also an

estimate of the overall improvement where VX =
∫
x dx is the volume of the instance

space. Combining these two estimates of improvement weighted according their

sample sizes yields

REVI(x, a) =
1

NX + 1

(
NX Î(x, a) + LEVI(x, a)VX

)
. (5.12)

The REVI method allocates samples to (instance, alternative) pairs for which the

difference between the chosen alternative and the best remaining alternative is

close across similar instances, where the prediction uncertainty is high across those

instances and where the instance density is high across those instances, see Figure 5.1.

After each new sample, the set of fixed points, XMC , are regenerated such that the

mapping does not overfit to a single discretization. NX may be seen as a parameter

to be chosen by the user, and setting NX = 0 the REVI method becomes equivalent

to LEVI method. In Section 5.4 we choose NX = n such that the discretization

density grows with the sample density.

A single call to REVI(x, a) requires one call to LEVI(x, a) and also the

means of the XMC instances for all A alternatives and also all posterior covariances

kna (XMC , x) to calculate σ̃na (XMC ;x). The means for all NX instances and alternat-

ives, µn1 (XMC), ..., µnA(XMC) can be precomputed and cached between REVI(x, a)

calls. Also the final terms of the matrix multiplication in Equation 5.3 for the

posterior covariances may be precomputed and cached reducing each kna (xi, x) call

64



from O(n2
a) to O(na),

kna (xn+1, XMC) = k0
a(x

n+1, XMC)− k0
a(x

n+1, Xn
a )
(
k0
a(X

n
a , X

n
a )
)−1

kn(Xn
a , XMC).︸ ︷︷ ︸

compute once and store for given XMC

Therefore after the first call, each additional call to REVI(x, a) has leading order

complexity O(n2
a + NXna). Defining n̄ = maxa na and assuming NX = n ≈ An̄

the leading complexity is O(n̄2) which is equivalent to LEVI(x, a) and EGO. Again

optimization of REVI(x, a) can be done by many methods and in Section 5.4 we use

the same Nelder-Mead algorithm with multiple starts.

If the instance distribution is discrete, X = {x1, ..} and P[xi] = pi, then

limNx→∞ Î = I(xi, a) may be computed exactly by summing instances weighted

according to their probabilities and the LEVI(x, a) term will vanish from REVI(x, a).

If all instances were equally likely pi = 1/|X|, the REVI method is equivalent to the

REVI method given in Chapter 4.3 which is asymptotically and myopically optimal.

In Section 5.4 we show that the REVI method significantly outperforms LEVI

and another method from the literature in our tests.

5.3.3 Neighbors Only Regional Expected Value of Improvement

The Monte-Carlo integral Î with NX samples requires computing σ̃na (xi, x), the

change in the predicted performance of an instance xi ∈ XMC caused by the new

sample at x, which requires computing kna (xi, x). When covariance between xi and x

is low, the instance xi expected improvement is very small. As a result the summation

in Equation 5.11 may be dominated by a few large terms and many small negligible

terms. To improve efficiency, one may use importance sampling, for example with a

stationary kernel, setting XMC = {x+ δi|i = 1, .., NX} with random δi ∼ N (0, 1),

would significantly reduce error in Î(x, a). However in our experiments this lead to

slower computation, it’s not possible to precompute means and partial covariances,

and the REVI(x, a) is very rugged and not easily optimized, fewer computaions can

be cached.

Instead we propose the Neighbors Only Regional Expected Value of Improve-

ment method (NREVI). The Monte-Carlo instances, XMC , are generated as with

65



REVI, however, only instances whose prior covariance is above a threshold are

included in the Monte-Carlo integral. By filtering points according to the cheaply

computed prior covariance, we can avoid the costly matrix multiplication in posterior

covariance in Equation 5.3 for points that do not significantly contribute to Î,

kna (xn+1, XMC) = k0
a(x

n+1, XMC)︸ ︷︷ ︸
if very small

− k0
a(x

n+1, Xn
a )
(
k0
a(X

n
a , X

n
a )
)−1

kn(Xn
a , XMC).︸ ︷︷ ︸

then don’t compute

The acquisition function is given by

I(x, a) ≈ ÎN (x, a)

=
1

NX

∑
xi∈XMC

E
[

max
a

µn+1
a (xi)−max

a′
µna′(xi)

]
1{k0

a(xi, x) > δ}︸ ︷︷ ︸
filtering

where 1{} is the indicator function returning unity if the argument is true. Otherwise

the NREVI acquisition function is the same as the REVI function

NREVI(x, a) =
1

NX + 1

(
NX ÎN (x, a) + VXLEV I(x, a)

)
After each new sample the XMC is randomly regenerated. This sampling method

has the same advantages as the LEVI and REVI methods however it gives a similarly

accurate estimate of improvement to REVI while significantly reducing computational

cost. The disadvantage is that the estimate is not consistent and biased, excluding

outlying tasks will underestimate I(x, a),

lim
NX→∞

ÎN (x, a) 6= I(x, a).

This compromise is required to achieve caching of computations with large sample

sizes NX . The N-REVI method has two parameters, NX and δ. When using a

stationary kernel, k0(x, x′) = h(|x − x′|), such as the Matern class of kernels or

squared exponential, points may be filtered according to |x− x′| < r and the two

free parameters are NX and r. We show in Section 5.4 that computation time of

N-REVI is drastically less than REVI without any significant loss in performance.

66



●

●

0 20 40 60 80 100

−
2.

0
−

1.
0

0.
0

1.
0

LEVI

Task  Features X

●

●

●

●

●

●
● ●

●

●

●

●

a=1
a=2
a=3

●

●

0 20 40 60 80 100

−
2.

0
−

1.
0

0.
0

1.
0

REVI

Task  Features X

P
er

fo
rm

an
ce

 Y

●

●

●

●

●

●
● ●

●

●

●

●

●

●

0 20 40 60 80 100

−
2.

0
−

1.
0

0.
0

1.
0

N−REVI

Task  Features X

P
er

fo
rm

an
ce

 Y

●

●

●

●

●

●
● ●

●

●

●

●

Figure 5.1: How the methods quantify acquisition value at (x, a) = (40, 3). Left:
LEVI computes how much the the current GP will improve upon the best at the
current task (thick line). Centre: REVI computes how much all tasks will improve
(shaded). Right:NREVI truncates the integration over tasks to save computation.
The colour bar at the bottom of the plot is the current mapping S(x)

By setting NX = 0 or δ =∞ or r = 0, the N-REVI method is equivalent to LEVI,

also by setting δ = 0 or r =∞ the N-REVI method is equivalent to REVI, therefore

computational complexity is between REVI and LEVI depending on the choice of

parameters, the kernel and P[x].

5.4 Numerical Experiments

We perform three sets pf experiments. First, we test N-REVI for a range of parameters

Nx and r. Second we compare N-REVI, REVI, and LEVI against another method

from the literature, comparing both convergence and computation time. Third, we

investigate the effect of the design of XMC in N-REVI.

We apply our methods to a set of four (A = 4) synthetic functions sampled

from a Gaussian process prior with a squared exponential kernel, θ1(x), ..., θ4(x) ∼

GP (µ0(x) = 0, k0(x, x′) = exp(−0.5||x−x′||22/72). The input domain is X = [0, 100]2

and the output domain is real numbers. In practice, for each function, a multivariate

normal sample is produced from the prior evaluated at a discretized X and the

sample is used to condition the continuous prior, yielding a continuous posterior

mean. The posterior mean functions are used as synthetic functions θ1, . . . , θ4 and

plotted with the optimal mapping in Figures 5.2 (a) and (b). The noise is set to

σ2
a,ε = 0.12 for all alternatives. Given these four functions we use two instance

67



distributions: a) A uniform distribution (UNI) PU [x] = 1/10, 000, so that we can

compare directly with the Gap-SUR method proposed by Hu and Ludkovski [2015],

and b) A “Wedge” instance distribution, PW [x] = x1/5 ∗ 105, linearly increasing only

in the x1 direction that is adversarially designed to show the benefits of accounting

for local task density and correlation.

To initialize sampling, a random design is used as described below with

10 samples per alternative, 40 samples in total, Figure 5.2 e) show one such the

sample allocation for the wedge distribution. In practice these samples would be

used to learn hyperparameters for the Gaussian Processes however we treat the

hyperparameters as constant throughout sampling for all methods such that the only

difference between all methods is the acquisition function. Figures 5.2 c) and d) give

the estimated performance functions and mapping after fitting a GP to the initial 40

samples.

After the initialization, the sequential methods are then applied until 200

samples in total have been allocated. Figure 5.2 f) shows the LEVI(x,a) after the

initialization and it can be seen that LEVI prioritizes high P[x], which is on the

boundary of the domain. However REVI(x,a) shown in Figure 5.2 g) does not

prioritize the highest P[x] but is closer to the mean x where the regional benefit of a

new sample is greater as there are many instances surrounding the new sample.

To measure the quality of the mapping, for each budget size, N ∈ [40, ..., 200],

the mapping S(x) = argmax
a

µNa (x) is evaluated for 1000 points in the space X

and the total opportunity cost is recorded. The 1000 test instances, XT , are

distributed according to PU [x] and PW [x] for uniform and wedge respectively. For

each distribution they are generated once and the same instances are used to measure

opportunity cost for all experiments. They are never used for the random sampling

method nor in XMC , it is a left-out test set.

Opportunity Cost =
∑
xi∈XT

max
a

θa(xi)− θS(xi)(xi) (5.13)

To measure the computational cost of the methods, the time taken to optimize

the acquisition function is measured, all parameters for the Nelder-Mead algorithm

68



(a)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●

0 20 40 60 80 100

0
20

40
60

80
10

0

0:100

0:
10

0

(b)
(c)

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●

0 20 40 60 80 100

0
20

40
60

80
10

0

0:100

0:
10

0

(d)

(e)
(f) (g)

Figure 5.2: In all plots: x and y axis are instance features, each color represents an
alternative. (a),(b) the true performance functions and the true optimal mapping.
(c)(d) the predicted functions and mapping after the initial 40 samples when using
the wedge distribution. (e) the allocation of the 40 samples. (f) the LEVI(x,a) and
(g) REVI(x,a), note how LEVI(x,a) is greatly influenced by the P[x] and peaks on
the edge of the domain, whereas REVI(x,a) is smoother and peaks further within
the domain where more instances can benefit from a new measurement.

are kept constant across all experiments α = 1, β = 0.5, γ = 2 with 15 random

restarts seeded by points sampled from the appropriate P[x]. Each sampling method

is applied 400 times with different initial samples and noise values. For the REVI

methods we run experiments for NX ∈ {0.5n, n, 2n, 4n}, and r ∈ {1lX , 2lX , 3lX ,∞}

where lX = 7 is the kernel length scale. In order to investigate the influence of the

varying sample size NX and overfitting, we also run experiments with REVI where

the Monte-Carlo sample size is constant: NX = 100 and NX = 200 and where the

MC samples are fixed for all time or randomized at each time step which we refer to

as ”jittering”. We compare the final opportunity cost of these methods with original

REVI where the MC sample size grows as the budget is consumed.

69



5.4.1 Alternative Methods

Random Sampling

Given a budget of N samples, N instances are chosen by Latin Hypercube (uniform

case) and by sampling PW [x] (wedge case). The points are randomly divided into A

groups whose sizes differ by at most 1. For all (instance,alternative) pairs performance,

f(x, a) = θa(x) + ε, is measured and a Gaussian Process is fitted to the resulting

dataset. This method represents the naive approach that does not exploit past

evaluations to inform new ones.

Gap-SUR

Hu and Ludkovski [2015] consider the same problem with a uniform instance distribu-

tion. The proposed method allocates samples to the (instance, alternative) pair that

maximizes the reduction in the upper bound of the highest performing alternative:

Gap− SUR(x, a) =
(
E[max

a′
θa′(x)|Fn]− E[max

a′
θa′(x)|Fn+1]

)
P[x]

where θa ∼ N(µn(a), kna (x, x)) and Fn+1 is the next filtration constructed by as-

suming the new sample will be equal to the current mean (xn+1, an+1, yn+1) =

(x, a, µna(x)). The maximum of multiple Gaussian random variables is calculated

by approximating the maximum of any two Gaussian random variables as another

Gaussian, for which first and second moments are known, and iterating over A.

One evaluation of GAP − SUR(x, a) requires one call each to kn1 (x, x), .., knA(x, x),

however once the posterior variances are known, evaluating Gap− SUR(x, a) for all

a with the same x is relatively cheap. Therefore we optimize the acquisition function

over x once using Nelder-Mead with the same parameters as other methods and for

each x, Gap − SUR(x, a) is optimized over a by inspection, thereby reducing the

number of posterior covariance calls.

5.4.2 Results

First we have examined the influence of the REVI parameters NX (Monte Carlo

sample size) and r (filtering radius) on the opportunity cost. Figure 5.3 shows the

70



results for (a) the uniform distribution and (b) the wedge distribution. Increasing the

NX parameter significantly improves performance in all cases, and the improvement

is larger for the wedge distribution than for the uniform distribution. Apparently

larger NX improves accuracy of the estimate of improvement more in a more

complicated instance distribution. Varying r from r = 1 to r =∞ does not provide

significant performance but does significantly increase computation time presented

in Figure 5.4. As can be seen, LEVI is fastest, followed by Gap− SUR. REVI still

scales linearly with the number of samples, but the slope is steeper than for the

other methods. Standard REVI with r =∞, NX = n has about the same runtime

curve as NREVI with r = 1, NX = 4n. But as we have seen earlier in Figure 5.3, the

latter version performs much better in terms of opportunity cost. Thus, for our final

comparison with the other benchmark methods, we limit ourselves to NREVI with

r = 1, NX = 4n.

●

●

19
0

19
5

20
0

●

●

●

●

●

●

● ●

●

● ●
●

●

● ●
●

r
Nx=0.5n

r
Nx=1n

r
Nx=2n

r
Nx=4n

1 2 3 ∞ 1 2 3 ∞ 1 2 3 ∞ 1 2 3 ∞

(a) UNI Final OC

●

●

15
5

16
5

17
5

● ●
● ●

● ●
● ●

●

● ●

●

● ●
●

●

r
Nx=0.5n

r
Nx=1n

r
Nx=2n

r
Nx=4n

1 2 3 ∞ 1 2 3 ∞ 1 2 3 ∞ 1 2 3 ∞

(b) Wedge Final OC

Figure 5.3: Opportunity cost of REVI depending on NX and r at the end of the
200 samples taken.

Figure 5.5 displays how the opportunity cost decreases with the number

of samples, for the different sampling methods. As expected, random sampling

is significantly worse than all sequential methods for both instance distributions.

LEVI performs as good as or better than Gap-SUR, and as seen in Figure 5.4 is

slightly faster to optimize in this implementation. In all benchmarks, NREVI is

significantly better than the local methods, LEVI and Gap-SUR, suggesting that

even the simplest accounting of correlated instances, NX = 4n, r = lX , does yield a

significant performance benefit for increased computational cost. For most real world

71



(a) Time(s) NX = 0.5n

●

●

50 100 150 200

N

0.
5

1.
0

1.
5

(b) Time(s) NX = n

●

●

50 100 150 200

N

0.
5

1.
0

1.
5

(c) Time(s) NX = 2n

●

●

50 100 150 200

N

0.
5

1.
0

1.
5

(d) Time(s) NX = 4n

●

●

50 100 150 200

N

0.
5

1.
0

1.
5

Figure 5.4: Optimization time in seconds per iteration for different sample sizes.
Green is Gap− SUR, black is LEVI. REVI with r values increasing from light to
dark.

simulation applications the running time is dominated by the simulation, here we see

that REVI improves performance and yet scales poorly to large sampling budgets N

and computation time may balloon and assuming negligible computation overhead

is unrealistic. Whereas NREVI, in our experiments, has the performance benefits of

REVI and scales to larger sampling budgets with the reduced risk of significantly

growing run time.

The difference between the REVI and local methods is larger for the wedge

distribution. The local methods prioritize the mode of P[x], which is at x1 = 100

in the wedge case. The REVI methods prioritize where there are many correlating

instances, which will not be at x1 = 100 due to lack of XMC points to contribute to

72



Î(x, a) for a sample near a boundary. Therefore REVI methods outperform LEVI

even in the uniform case as LEVI has no incentive to avoid sampling near a boundary,

instances that yield only marginal global improvement.

●

●

50 100 150 200

20
0

30
0

40
0

60
0

N

(a) UNI OC

●

●

50 100 150 200

20
0

30
0

50
0

70
0

N

(b) Wedge OC

Figure 5.5: Opportunity cost over the course of the sampling, pink is random
sampling, green isGap−SUR, black is LEVI, and blue for REVI with r = 1, NX = 4n.

Finally, results comparing standard REVI (NX = n/2) with REVI where

XMC is fixed and where XMC is jittered (both NX = 100) are given in Figure 5.6 a).

Standard REVI performs worst presumably due to the small NX for small budgets.

This is followed by the fixed samples and then jittered samples suggesting the

mapping S(x) was overfitting to the fixed XMC and therefore jittering is necessary.

When the XMC set is equal to the sampling budget of 200, Figure 5.6, there is no

significant difference between the three versions, presumably there are not enough

samples allocated to overfit, this may not be the case for larger budgets. Although

not shown the standard REVI requires less computation while the sample size is still

small.

5.5 Conclusion

We have considered the problem of finding the best or near best alternative from

a set of alternatives for each point across a problem instance domain described by

continuous features. We have proposed new myopic sampling methods that allow to

efficiently derive an accurate mapping from problem instance features to the best

alternative. In two synthetic benchmark problems, our methods show significantly

73



●

●

17
0

19
0

21
0

●

●

●

●
●

●
●

●

●

●
●

●

Nx=100 Nx=200 Nx=100 Nx=200

F J R F J R F J R F J R

(a) Final OC, UNI Wedge

Figure 5.6: Final opportunity cost, uniform problems left, wedge problems right, for
fixed XMC points (F), jittering XMC points (J) and standard REVI (R). Blue for
NX = 100 and purple for NX = 200 (NX = 0.5n and n for REVI).

better performance than random sampling as well as a recently published algorithm

from the literature. Furthermore, we have compared various ways of numerically

integrating the expected improvement over the problem instance domain, and found

that using a large sample size, but only taking into account samples with correlation

yields the best results at lower computational cost. Future work includes applying

the method to a real world problem and providing a consistency guarantee.

74



Chapter 6

Multi-Task Conditional

Bayesian Optimization

6.1 Introduction

In this chapter, we consider the problem where one is given multiple continuous

optimisation problems (tasks) over a common domain where the learning about one

function can inform other functions. Given a set of tasks that can be described by

continuous features, and a tool with continuous parameters to be tuned, we would

like to identify the unique optimal parameter setting for each task. This generalises

the work in the previous chapters to fully continuous task domain x ∈ X and input

a ∈ A that we now refer to as parameter instead of “tool” or “alternative”. We can

perform experiments to collect information, i.e., run the tool with a specific parameter

setting on a specific task, and obtain a sample of a noisy performance measurement.

Given a finite budget, the goal is to decide which sequence of experiments to perform

that would allow us to construct the best mapping from task features to optimal

parameter settings.

This general problem occurs in many applications, including

• Tuning of Optimisation Algorithms. Many optimisation algorithms have con-

tinuous parameters that need to be tuned specific to the problem instance

at hand. It is thus desirable to construct a mapping that suggests the best

75



parameter setting depending on features of the problem instance. In the ma-

chine learning community, training of deep neural networks requires setting the

learning rate for gradient descent depending on the dataset and model. In the

meta-learning community, much work has been done on deriving a mapping

from problem features to best algorithm parameters based on a given set of

performance data.

• Dose-Finding Clinical Trials. The dosage and the compound mixture of a

drug may have a strong impact on a drug’s effect, and different patients react

differently to the drug. Our method can be used to design more efficient

clinical trials to identify the best dosage or compound mixture for each patient,

based on patient characteristics such as age or biomarker response. A related

application has been considered by Krause and Ong [2011].

• Online Operating Policies. A complex system may best be operated in different

ways depending on the context such as environmental conditions. For example,

a factory may be using dispatching rules for real-time scheduling, and the

dispatching rules have some parameters whose optimal setting depends on shop

floor conditions such as utilisation level or product mix. Heger et al. [2016] use

a large number of experiments to derive a policy for setting dispatching rule

parameters depending on shop floor conditions.

In this chapter, we propose two myopic sequential sampling methods, REVI,

a generalisation of REVI from previous chapters, and CLEVI, a modified LEVI

from the previous chapter. We use a Gaussian processes to model the unknown

function from the joint domain of task features and parameters to performance,

X × A → R. The method thus exploits covariance in the space of tasks and

parameters. We demonstrate empirically that the new methods outperform two

recently published multi-task conditional Bayesian optimisation algorithms from

the literature. Furthermore, to the best of our knowledge, we are also the first to

explicitly consider two different ways for a decision maker to pick a solution: the

solution with the best sampled performance, and the solution with the best predicted

performance.

76



The chapter is structured as follows. In Section 6.2 we provide the general

problem formulation, and then describe the Gaussian Process model and our two new

sampling procedures in Section 6.3. A baseline algorithm is described in Section 6.4.

In Section 6.5 we empirically evaluate our methods on three synthetic benchmarks

and we conclude in Section 6.6 with a summary and some ideas for future work.

6.2 Problem Formulation

We assume that there exists a (discrete or continuous) set of tasks described by DX

features, x ∈ X ⊂ RDX , and the tasks are distributed according to a known density

P[x]. There is a tool with DA tunable parameters a ∈ A ⊂ RDA . Executing the

tool with parameters a on a task with features x yields a performance measurement

Yx,a = θ(x, a) + ε where θ : X ×A→ R is a deterministic latent function from (task,

parameter) to expected performance and ε is independent and identically distributed

observation noise ε ∼ N(0, σ2
ε ). Our aim is to find a mapping S : X → A from

a given task to the optimal parameter setting for this task that approximates the

true optimal mapping S∗(x) = argmax
a

θ(x, a) with incomplete information. The

quality of the derived mapping S(x) at the end of sampling is the corresponding

true expected performance over all tasks:

∫
x∈X

θ(x, S(x))P[x]dx. (6.1)

We assume we have a fixed budget of N samples (tests of a parameter setting on

a task), and that we can sample iteratively, i.e., we can select the task x and the

parameter setting a from which to sample performance Yx,a based on the information

collected so far.

Given this formulation, if x is constant, the problem reduces to a single global

optimisation over A. However, because there is a range of x, one must find the

conditional optima given task x: maxa θ(x, a). Examples of benchmark functions

used later can be seen in Figure 6.1.

This formulation also accounts for task distribution because in practice, under

a constrained budget, finding the optimal parameters for tasks with unusual outlying

77



features (low P[x]) is less useful than finding the optimal parameters for common

tasks (high P[x]) and may be replaced by any user defined weight function W (x).

In the clinical trials dose finding example given earlier, x may be a patient’s

cancer cell biomarker measurements, P[x] would be the target patient population

distribution across biomarker space X, and a would be the quantities of compounds

to use in a treatment. In this case, only patients in the trial can be tested while the

mapping can be learnt for patients outside the trial. θ(x, a) would be the expected

measured outcome of the treatment such as average reduction in tumour size. A

clinician would then like to find the compound mixture a for each patient x that

maximises the expected tumour reduction θ(x, a) across all patients P[x]. The

clinician can then create a mapping from a given patient x to the optimal compounds

a = S(x).

In simulation optimisation, for example finding optimal ambulance base

location conditional on patient distribution, x would be the parameters of a patient

population distribution in a city, P[x] is the distribution of population parameters

over cities. A is the set of valid ambulance base locations and θ(x, a) is journey

time from ambulances to patients in a simulation run. S(x) returns the optimal

ambulance location based on population parameters x.

Using this framework, we consider two ways to derive a mapping S(x). In

general, for a risk neutral decision maker, S(x) would return the solution with the best

predicted performance based on the samples collected and the derived performance

prediction model µ(x, a), such a mapping is given by

S1(x) = argmax
a

µ(x, a). (6.2)

As a special case of the above framework, when the task distribution is discrete,

X = {x1, .., xNX}, the sampling budget is greater than the number of tasks, N > NX ,

and there is no observation noise, (σε = 0), one may also consider a risk averse

decision maker. In this work, we define such a decision maker as one that only

selects parameters a for a task xi from parameters that have been measured, i.e., of

which the performance is known with certainty. If the set of sampled parameters

78



0 20 40 60 80 100

0
20

40
60

80
10

0

Branin−Hoo Test Function

X

A

0 20 40 60 80 100

0
20

40
60

80
10

0

RosenBrock Test Function

X

A

Figure 6.1: Given functions of multiple inputs, we aim to find the optimum of
some inputs conditioned on the remaining inputs. In 2D, for each point along the
horizontal axis we aim to find the optimal value along the vertical axis as shown by
the thick blue lines.

is denoted AN = {a1, ..., aN} and the subset corresponding to task xi is denoted

ANi = {an|xn = xi, n ∈ {1, ..., N}}, a mapping for such a decision maker is then

given by

S2(xi) = argmax
a∈ANi

θ(xi, a). (6.3)

where we have noted that the true objective function is known for past evaluated

points {y1, ..., yn} = {θ(x1, a1), ..., θ(xn, an)} as there is no observation noise.

6.3 Myopic Sampling Methods

We use a Gaussian process regression model to predict the underlying latent function

θ(x, a) based on the n data points collected so far (x1, a1, y1), ..., (xn, an, yn).

For this chapter, we use the notation x̃ = (x, a) ∈ X ×A and write functions

of both input variables as µn(x, a) = µn(x̃). We define the set of sampled task

features values {x1, ..., xn} = Xn, parameters {a1, ..., an} = An, the set of input

pairs {(x1, a1), ..., (xn, an)} = X̃n and column vector of outputs (y1, ..., yn) = Y n.

We define the sequence of filtrations, Fn, as sigma algebras generated by the data

collected up to time n, Fn = σ{(x1, a1, y1), . . . , (xn, an, yn)}. Contrasting with the

79



previous chapters, a ∈ A is a continuous parameter, we make it an explicit argument

and there is now only one Gaussian process model over the joint domain X ×A,

E[θ(x, a)|Fn] = µn(x̃) (6.4)

= µ0(x̃) + k0(x̃, X̃n)(Kn + σ2
ε I)−1(Y n − µ0(X̃n))

Cov[θ(x, a), θ(x′, a′)|Fn] = kn(x̃, x̃′)

= k0(x̃, x̃′)− k0(x̃, X̃n)(Kn + σ2
ε I)−1k0(X̃n, x̃′)

where Kn
ij = k0((xi, ai), (xj , aj)) is the n×n matrix composed of the prior covariance

function evaluated for all the sampled input points X̃n. We have written k0(x̃, X̃n)

to denote the 1× n matrix of prior covariance between x̃ and all points in X̃n and

likewise k0(X̃n, x̃′) is the n× 1 matrix.

As mentioned in Section 6.2, there are at least two choices of the derived

mapping S(x) that are not clearly distinguished in the current literature. The

EGO and SKO algorithms were implicitly designed on the basis that the input

corresponding to best sampled point will be returned to the user at the end of

sampling, which corresponds to the mapping S2(x) from Equation 6.3. For the

EGO algorithm, samples are allocated to maximise the expected improvement (EI)

of the largest sampled value ȳ = maxY n, recall the expected improvement from

Chapter 3.3.2,

EI(a) = E
[
max{y1, ..., yn, yn+1} −max{y1, . . . , yn}|Fn, an+1 = a

]
= (µn(a)− ȳ)Φ

(
µn(a)− ȳ
δn(a)

)
− δn(a)φ

(
µn(a)− ȳ
δn(a)

)

where Φ(z) and φ(z) are standard normal cumulative and density functions and

δn(a) =
√
kn(a, a) is the posterior standard deviation.

In the multi-task setting however, S2(x) and EGO can only be used if the task

distribution is discrete and the sampling budget is greater than the number of tasks,

therefore cannot be used in the continuous task case (|X| = NX =∞) or whenever

the tasks outnumber the sampling budget(NX > N). Using a regression model over

the joint domain µ(x, a), such as Gaussian process regression, one is able to predict

80



the performance of any point. For a given task x, a risk-neutral decision maker is

more likely to choose the point with the best predicted (but not necessarily sampled)

performance. This is the assumption used by Frazier et al. [2009a] in their paper on

Knowledge Gradient for Correlated Normal Beliefs, although that algorithm was not

designed specifically for continuous optimisation, it can be applied to a discretization

of a continuous domain. In our case of multi-task optimisation, we would choose

the mapping given by Equation 6.2, S1(x) = argmax
a

µN (x, a), which is defined for

any sampled or unsampled task and thus applicable also if the task distribution is

continuous. Our methods below will mainly target the mapping S1, but we will also

propose a new way to deal with S2 in Section 6.3.3.

In order to allocate samples to maximise Value of Information, we require

an estimate of the current performance upon which we must improve, and we note

that as with constructing the mapping, it is not possible to use the highest sampled

point as this does not exist for all tasks. Instead we use the model’s prediction of

expected performance, given the mapping S1(x), the current predicted performance

on a task x is µn(x, S1(x)) = maxa µ
n(x, a) and so the total predicted performance

after n samples across the task distribution is given by

Pn =

∫
x∈X

µn(x, S1(x))P[x] dx =

∫
x∈X

max
a

µn(x, a)P[x] dx

that is the same as Equation 6.1 with the true function, θ(x, a), replaced by the

prediction µn(x, a) and is identical to previous chapters with a change of notation

for a.

Given a measure of performance, we need to derive myopic sampling policies

that Value of Information, E[Pn+1 − Pn|Fn, (x, a)n+1] requiring the new posterior

mean µn+1(x, a) that is given in previous chapters (Equations 5.9 and 5.10), repeated

here

µn+1(x̃) = µn(x̃) + σ̃(x̃; x̃n+1) Zn+1 (6.5)

where Zn+1 is a standard normal random variable Zn+1 ∼ N(0, 1). The remaining

81



term σ̃(x̃; x̃n+1) is given by

σ̃(x̃; x̃n+1) =
kn(x̃, x̃n+1)√

kn(x̃n+1, x̃n+1) + σ2
ε

is the additive update to the posterior mean caused by the new sample at x̃n+1

and scaled by the stochastic Zn+1. The expectation, over Zn+1 ∼ N(0, 1), of the

performance prediction after the next sample is

E[Pn+1|Fn, x̃n+1] =

∫
x∈X

E
[

max
a
{µn(x, a) + σ̃((x, a); x̃n+1)Zn+1}

]
P[x] dx.

(6.6)

Finally, we may write the Value of Information, the difference in predicted perform-

ance between consecutive samples as follows

I(x̃) = E
[
Pn+1 − Pn|Fn, x̃n+1 = x̃

]
=

∫
x′∈X

E
[

max
a′
{µn(x′, a′) + σ̃((x′, a′); x̃)Zn+1} −max

a′
µn(x′, a′)

]
P[x′] dx′.

(6.7)

which differs from the previous chapters because now the inner maxa is over a

continuous set; we make this distinction from the previous chapters clearer in the

next section. The integrand, for a fixed task x, is the same as the Knowledge

Gradient acquisition function given in Chapter 3.3.1. The above expression can be

evaluated exactly when X and A are finite discrete sets. However, when X and A

are continuous sets, there is no solution for the expectation over Zn+1 of the max

function, nor is it possible to integrate across tasks for arbitrary P[x]. Next, we

propose the CLEVI and REVI acquisition functions based on approximations to

Equation 6.7.

6.3.1 CLEVI Sampling Policy

We aim to allocate samples in order to maximise I(x̃), the expected improvement

in predicted performance calculated across all tasks, however this integral must be

82



approximated. The Convolutional Local Expected Value of Improvement (CLEVI)

policy makes two assumptions in order to evaluate the integral. Firstly, for each x′,

the maximisation over continuous A may be approximated by a maximisation over a

finite set AD. And secondly, the improvement for a task that is not the candidate

sample task, x′ 6= xn+1, may be approximated by the improvement at the sampled

task xn+1, and the covariance across tasks kX(x′, xn+1).

By replacing the maximisation over continuous A with a maximisation over

discrete AD containing nA = |AD| points, the expectation within the integrand of

I(x̃) for a given x′ may be written as:

E
[

max{µn(x′, AD) + σ̃((x′, AD); (x, a))Z} −maxµn(x′, AD)
]

(6.8)

where µn(x′, AD) = (µn(x′, a1), . . . , µn(x′, ana)) ∈ RnA is the vector of means and

similarly for σ̃((x′, AD); (x, a)). Gathering terms, Equation 6.8 is thus of the form

E
[

max{µ1 + σ1Z, . . . , µnA + σnAZ}
]

which is the expectation of the maximum of 1-dimensional linear functions with a

Gaussian argument Z. This expectation can be cheaply evaluated using Algorithm 1

in Knowledge Gradient for Correlated Normal Beliefs [Frazier et al., 2009a] reproduced

here in Algorithm 1. To summarise briefly, which of the linear functions is the largest

varies with Z, finding the index of highest linear function for each Z and calculating

the intersections (the epigraph) can be done in O(nA log(nA)) time. Once the piece-

wise linear ”ceiling” over all the linear functions is known, the expectation over Z

is a sum of expectations of each linear piece, a sum of means of truncated normal

distributions. For convenience, we define the function KG: RnA × RnA → R that

takes a vector of means (intercepts) and a vector of additive updates (gradients) and

returns the expectation as given by Algorithm 1. Given the KG(µ, σ) function we

may write the Value of Information integral as

I(x, a) ≈
∫
X

KG
(
µn(x′, AD), σ̃((x′, AD); (x, a))

)
P[x′]dx′.

83



First we require that the Gaussian process kernel is factorisable,

k0((x, a), (x′, a′)) = σ2
0kX(x, x′)kA(a, a′),

such as the Matern class or squared exponential kernels. The second assumption

we make is that the expected improvement at an arbitrary task x′ 6= xn+1 may be

approximated by the improvement at the next task xn+1 and the covariance between

tasks kX(x′, xn+1),

KG
(
µn(x′, AD), σ̃((x′, AD); (xn+1, an+1))

)
≈ KG

(
µn(xn+1, AD), σ̃((xn+1, AD); (xn+1, an+1))

)
kX(x′, xn+1).

Plugging both of these assumptions into Equation 6.7 and rearranging yields the

following formula

I(x, a) ≈ KG
(
µn(x,AD), σ̃((x,AD); (x, a))

) ∫
X
kX(x′, x)P[x′]dx′.

where the integral of the right hand side is the convolution, or kernel smoothing,

between the task covariance kernel and the underlying task distribution. We denote

the convolved density P̃[x]. This may be found analytically in special cases such

as a Gaussian kernel and any piece-wise linear density function over X such as the

uniform or triangle distributions. If no analytical expression can be found, then

Monte-Carlo integration may be used, samples of P[x] used in a kernel density

estimate using kernel kX(x, x′). Given these two assumptions, we finally write the

CLEVI acquisition function as

CLEVI(x, a) = KG
(
µn(x,AD), σ̃((x,AD); (x, a))

)
P̃[x] (6.9)

The KG function need only be called once. The CLEVI sampling policy treats each

task as a single global optimisation and uses the Knowledge Gradient for standard

global optimisation over A within the single task xn+1 to quantify the value of a

new sample at (x, a)n+1. However this acquisition value is weighted by P̃[x] which

84



0 20 40 60 80 100

0.
00

0
0.

00
4

0.
00

8

x

P
[x

]

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

x

P
[x

]

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0
0.

03
0

x

P
[x

]

Figure 6.2: In all plots, black solid line: the task distribution P[x], blue dotted
line: transformed task distribution P̃[x] with a Gaussian kernel with length scale
lX = 10. Using the transformed P̃[x] instead of P[x] down weighs sampling at sharp
boundaries as shown in the left plots, and up weighs sampling between clusters as
shown in the right plot.

gives the task a relative importance. If the untransformed P[x] were used instead,

the policy may allocate samples to where the single point task density, P[x], is high

as we saw LEVI in the previous Chapters. However this may not be ideal in certain

cases. For example, if the mode of P[x] is close to P[x] = 0, such as the triangular

distribution, then the mode is also the boundary where not many correlated tasks

can benefit from the new data. Sampling away from the boundary can provide

improvement for more tasks. Further examples are given in Figure 6.2.

Next we discuss the choice of discretisation AD. For single-task global

optimisation (equivalently P[x] is a single point mass), the Knowledge Gradient

for Continuous Parameters [Scott et al., 2011a] also calculates an estimate of the

Value of Information by discretising over the decision variable, A. They propose to

discretise A using past evaluated points and the current point AD = An ∪ {an+1}

therefore nA = n + 1. This has the advantage that points will cluster around the

global maxima, and if there is no observation noise the output of Algorithm 1 reduces

to the popular EI function. However, we would like to use the same set of points AD

for every task value x ∈ X for which the optimal a may be different. Therefore we

use a uniform latin hypercube over A, denoted ALHC = {a1, ..., ana} specifically in

order to avoid clustering. We freeze AD, using the same discretisation for all tasks

x ∈′ X. As a result the CLEVI function is a smooth deterministic function that is

easily optimised. Like the Knowledge Gradient policy, the derivative of CLEV I(x, a)

with respect to (x, a) can be derived in closed form and used with multiple starts in

85



gradient ascent optimisers.

We next discuss nA. For a given nA and xn+1, the discretisation is a set

of reference points, {xn+1} × AD = X̃ref ⊂ X × A all with the same task value

xn+1. In contrast, recall the observed X̃n points are more spread out over the

domain X × A all with unique task values Xn. Only a subset of X̃n points will

have significant correlation with the current task, i.e. large kX(Xn, xn+1). Hence,

by setting nA = n, the reference points will outnumber the number of influential

observed points, therefore we use nA = n+ 1 and AD = ALHC ∪ {an+1}.

A single evaluation of the EGO expected improvement (EI) function requires

evaluating both the posterior mean O(n) and covariance O(n2). Evaluating the

CLEVI function requires evaluating the posterior mean and covariance nA times,

and one call to the KG function which has complexity O(nAlog(nA)), thus the

complexity of one CLEVI call is O(nAn
2 + nAlog(nA)), strictly greater than one EI

call. In this problem formulation, the Value of Information can only be measured

using the posterior means which are all changed by the new sample. Thus, the

problem formulation requires extra calls to the posterior covariance. However, as

with the Neighbors-REVI in the previous chapter, this complexity may be reduced

by assuming that reference points X̃ref that have low prior correlation with (x, a)n+1

will have zero posterior correlation. This reduces computation with little loss of

efficiency. This ”zeroing” of posterior covariance is discussed in Section 6.3.4.

The CLEVI sampling policy is readily adapted to the case where the set of

tasks is finite, X = {x1, ..., xNX} and each task has an associated probability. The

convolution reduces to summation, and the CLEVI function can be optimised over

A for each task individually. Likewise, if A is finite, one may set AD = A, and

continuously optimise over tasks X.

6.3.2 REVI Sampling Policy

The Regional Expected Value of Improvement policy (REVI) is the continouos

tool generalisation of the same REVI method from all previous chapters. REVI

improves upon the CLEVI policy by not making the second assumption and instead

accounting for improvement of similar tasks by evaluation rather than the convolution

86



Algorithm 1 The KG Function The following algorithm takes a vector of in-
tercepts and gradients finds the piece-wise linear epigraph, or “ceiling”, of all the
overlapping linear functions and calculates the expectation over a normally distrib-
uted input Z. Z̃ is the vector of Z values at the vertices of the epigraph, I is the
vector of indices of the corresponding linear functions that are part of the epigraph.
The algorithm starts with an epigraph of two lines with the lowest gradients, and at
each step, adds a steeper line and updates the epigraph. All vector indices to start
from 1.

Require: µ, σ ∈ RnA
Remove dominated pairs from µ and σ
Sort the elements of µ and σ in order of increasing σ

Initialize µ← µ−max{µ}, I ← [1, 2], Z̃ ← [−∞, µ1−µ2σ2−σ1 ]
for i = 3 to |µ| do

(1) j ← last(I), z ← µi−µj
σj−σi

if z < last(Z̃) then Delete last element of I, last element of Z̃, return to (1)
Add i to end of I and z to end of Z̃

end for
Z̃ ← [Z̃,∞]

return
length(I)∑
i=1

µIi(Φ(Z̃i+1)− Φ(Z̃i)) + σIi(φ(Z̃i)− φ(Z̃i+1))

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

Z

m
ax

 m
u^

n+
1

Figure 6.3: Each line represents the posterior mean at a given point after a new
sample yn+1 with z-score given by Z. Algorithm 1 removes the dominated functions
(dotted), finds the epigraph (highlighted), and calculates the expectation of the
epigraph over Z ∼ N(0, 1).

approximation, however this requires greater computation. Equation 6.6 gives

the value of information for each task integrated over the distribution of tasks

P[x]. However this cannot be evaluated exactly if X and A are continuous sets.

87



By discretising over A as described above in the CLEVI policy, for a given x

the expectation over Zn+1 can be computed exactly using the KG function. We

discretise over X by replacing it with a Monte-Carlo set XMC of nX task feature

values distributed according to P[x]. We define the Monte-Carlo estimate as

I(x, a) ≈ Î(x, a) (6.10)

=
1

nX

∑
xi∈XMC

E max
aj∈AD

{µn(xi, aj) + σ̃((xi, aj); (x, a))Zn+1} − max
aj∈AD

µn(xi, aj)

that tends to the true value I(x, a) as nX and nA tend to infinity, it is a consistent

estimator. In the summation of Equation 6.10, each term is the expectation over the

maximum of linear functions of Zn+1, therefore each term may be calculated using

the KG function and the summation yields the REVI acquisition function

REVI(x, a) =
1

nX

∑
xi∈XMC

KG
(
µn(xi, AD), σ̃((xi, AD); (x, a))

)
. (6.11)

The above Monte-Carlo integral does not usually include the proposed sample task

xn+1, because xn+1 is not a sample from P[x]. It may be included by adding

CLEVI(x, a) such that REVI is a mix of two estimates of I(x̃) although we do not

consider such approximations here. The set of reference points used to compute

REVI is

X̃ref = XMC ×ALHC ∪ {an+1} ⊂ X ×A

which has nX(nA + 1) points. The (task, parameter) pair that maximises the REVI

function is chosen for sampling. At each time step, the random sets XMC and AD

are generated and held constant until the next time step when they are regenerated.

Jittering the discretisation in both domains ensures the learnt mapping does not

overfit to one particular discretisation and in the long term the learnt mapping

converges to the true optimal mapping. We discuss more efficient choice of nX and

XMC in Section 6.3.4.

One call to REVI requires the computation of Î(xn+1, an+1) which can be

decomposed. There are nXnA fixed reference points in the discretisation. For

nX(nA − 1) of the points that do not vary with (x, a)n+1, the posterior means and

88



final two terms of the posterior covariance can be precomputed and stored between

REVI calls

kn(x̃n+1, X̃ref ) = k0(x̃n+1, X̃ref )− k0(x̃n+1, X̃n)
(
k0(X̃n, X̃n)

)−1
k0(X̃n, X̃ref ).︸ ︷︷ ︸

precompute and store

Therefore, only the first two terms of the matrix multiplication for the posterior

covariance are necessary, resulting in an O(nXnAn) computation per call. The

remaining posterior means and covariances for the nX points corresponding to

(XMC , a
n+1) must be computed resulting in a cost of O(nXn

2) and the KG function

must be called nX times. Overall, one call to REVI requires O(nXn
2 + nXnAn +

nXnAlog(nA)). In our experiments we set nA = n and nX = 4
√
n, each REVI call has

leading order complexity O(n2.5) which is greater than one call to EI, O(n2), however

less than the O(n3) required to fit a Gaussian process. Much of the computation

may be reduced by assuming points in the discretisation that are uncorrelated with

the new sample may be set to 0 which is discussed in Section 6.3.4.

6.3.3 Discrete Task Distributions

Adapting the CLEVI policy to discrete tasks or discrete parameters is easily done

as explained in Section 6.3.1. Adapting REVI to finite sets X where P[x] is a

probability mass function, the expected improvement over all tasks can be computed

and weighted according to the relative probabilities of each task, or equivalently

limnx→∞REVI(xj , a), the new acquisition function becomes

REVID(xj , a) =
∑
xi∈X

P[xi]KG
(
µn(xi, AD), σ̃((xi, AD), (xj , a))

)
(6.12)

If we further assume that the parameter space is discrete with no correlation between

parameters, the KG function reduces to the EI function and REVID(x, a) is equivalent

to the REVI acquisition function of Chapter 5.

In the case of a risk averse decision maker who only chooses from sampled

points when selecting parameters for a given task, it is important to ensure that

good solutions for each task are actually sampled. As discussed in Section 6.2, the

89



mapping for such a decision maker is defined as

S2(xi) = argmax
a∈ANi

µN (xi, a)

where ANi = {an|xn = xi, n ∈ {1, ..., N}} is the subset of a values that have been

measured on task xi and we have utilised that yn = µN (xn, an). The REVI and

CLEVI policies aim to maximise the peak posterior mean for each xi, which can

result in some tasks not being sampled. For example, if two tasks are very similar, it

is only necessary to sample one of them to learn about both. However, for such an

unsampled task, the decision maker would be restricted to select the best of the few

randomly allocated initial samples. The overall performance of CLEVI and REVI is

possibly rather poor when using S2(xi).

In order to gain the performance advantages of using the posterior mean,

while only selecting parameters from sampled points, we propose here to sample

according to REVI and CLEVI. However allocate the final nX samples in a single

pass, one sample for each of the nX tasks and within each task, determine an+1 using

the EGO algorithm. For task xi, allocate an+1 to maximise the conditional expected

improvement of yn+1 over the best y value sampled on task xi. The procedure is

outlined in Algorithm 2.

As we show in the next section, maximising the posterior mean before applying

EGO for the final samples is superior when compared to using EGO for all samples.

We apply EGO for the last samples, instead of pure exploitation, because this is more

efficient due to Jensen’s inequality. Maximising the peak of the new dataset yields bet-

ter samples than sampling the point with highest expectation E[max{y1, ..., yn+1}] =

E[max{y1, ..., µn(x, a) +
√
kn(x̃, x̃)Z}] > max{y1, ..., yn,maxa µ

n(xi, a)}.

6.3.4 Efficient Monte Carlo Integration

We reuse the exact same trick as in the previous chapter where we proposed

Neighbours-REVI, adapted for correlation over the joint domain X×A. For reference

points x̃ ∈ X̃ref that are not highly correlated with the new sample point (small

k0(x̃, x̃n+1)), we propose to make the approximation σ̃n(x̃; x̃n+1) ≈ 0. Enforcing

90



Algorithm 2 Risk averse REVI

Initialise n0 samples using Latin Hypercube Design
update functions µn0 , kn0

for n = n0 + 1 to N − nX do
(x, a)n+1 ← argmax REV ID(x, a)

yn+1 ← θ(xn+1, an+1)
update functions µn+1, kn+1

end for
i← 1
for n = N − nX to N do

an+1 ← argmax EGO(xi, a)

yn+1 ← θ(xi, a
n+1)

update functions µn+1, kn+1

i← i+ 1
end for
return S1(xi) = argmax

a∈ANi
µN (xi, a)

sparsity on the vector of additive updates, σ̃n(·), results in two computational speed-

ups. Firstly, for reference points, x̃r ∈ X̃ref , that are largely unaffected by the

sample x̃n+1, we may avoid the costly matrix multiplication involved in computing

the numerator of σ̃n(x̃r; x̃
n+1),

kn(x̃r, x̃
n+1) = k0(x̃r, x̃

n+1)︸ ︷︷ ︸
if very small

− k0(x̃r, X̃
n)
(
k0(X̃n, X̃n)

)−1
k0(X̃n, x̃n+1)︸ ︷︷ ︸

then don’t compute

and simply assume σ̃n(x̃r; x̃
n+1) = 0. Secondly, for any given task in the Monte-

Carlo set, xi ∈ XMC , if multiple elements of the vector σ̃((xi, AD); (x, a)n+1) are

zero, then all but the element with highest corresponding µn(xi, ·) can be removed.

The function KG(µ, σ̃) performs a sort and a loop over the elements in the vectors

σ̃((xi, AD); (x, a)n+1), by removing such zeroed elements, calls to the KG function

can be much cheaper. If for a given task, all elements σ̃((xi, AD); (x, a)n+1) are

zero, the KG function need not be called at all! An example is given in Figure

6.3. Stationary kernels have intrinsic length scales and so we “sparsify” reference

points that are beyond r = 3 length scales, i.e., where the Mahanalobis distance√
(x̃− x̃n+1)D(x̃− x̃n+1) > 3 with D = diag(1/l21, ..., l

2
d) being a diagonal matrix of

the square inverse of the GP length scales over dimensions of X ×A. Computation

91



Figure 6.4: Horizontal axis X = [0, 100], vertical axis A = [0, 100]. Surface: µn(x, a)+
σ̃n(x, a; 50, 50)Z for Z = 2 (L), 0.1 (C), -2 (R). Green point: new sample at
(50, 50). Blue points: observations. Black line: predicted conditional optima. The
circular ridge is the radius around the new point of the sparse approximation
σ̃n(x, a; 50, 50) = 0. Each fixed x slice is a global optimisation problem computed by
Knowledge Gradient s in Figure 3.2. Computing REVI(50, 50) is the average over
tasks of the KG for each task.

of REVI is illustrated in Figure 6.4.

6.4 Comparison with the Profile Expected Improvement

Algorithm

The Profile Expected Improvement (PEI) algorithm of Ginsbourger et al. [2014] con-

siders almost the exact same problem we consider here, with the added assumptions

that the task distribution is uniform. The algorithm they propose is a modification

of the EGO algorithm where a sample maximises the expected improvement over a

target value for the given task,

PEI(x, a) = E[max{yn+1 − T (x), 0}]

where the new sample is given by the Gaussian process,

yn+1 ∼ N(µn(x, a), kn((x, a), (x, a)).

The target of improvement is given by the peak posterior mean for the given

task x, however capped by the highest value of the data seen so far T (x) =

min{maxa µ
n(x, a),maxY n}. We now show that this is a slightly modified sim-

92



plification of the CLEVI algorithm. If we take the CLEVI acquisition function, firstly

assume that the task distribution is uniform and the convolution is not applied so

that the P[x] term can be discarded as constant. Secondly, set the sparsity approx-

imation such that all points have zero additive update except for the sampled point,

σ̃((x,AD \ {a}); (x, a)) = 0. Thirdly, by assuming no noise in function observations

the posterior standard error and the update to the mean at the sampled point are

equal σ̃((x, a); (x, a)) =
√
kn((x, a), (x, a)). Finally, if we augment the set AD with

the highest mean of the current task, argmaxaµ
n(x, a) ∈ AD, the CLEVI function

simplifies to

CLEVI′(x, a) = E
[

max{µn(x, a) +
√
kn((x, a), (x, a))Z︸ ︷︷ ︸
yn+1

,max
a

µn(x, a)︸ ︷︷ ︸
T (x)

}
]
−max

a
µn(x, a)

= E
[

max{yn+1 − T (x), 0}
]

The only differences between the PEI acquisition function and the CLEVI function

for a uniform task distribution without convolution, zero noise and maximum sparsity,

is the addition of argmaxaµ
n(x, a) to the set AD and the capping of the target value

T (x). By augmenting the set AD, this has the advantage that the target level for

improvement is more accurately measured. The disadvantage is that this requires

an extra optimisation over a with fixed x for each call to PEI(x, a), though in our

benchmarks we found this to be negligible. Another consequence of this optimisation

is that the PEI(x, a) acquisition function is no longer differentiable with respect

to (x, a) since dT (x)/dx is not analytically tractable and therefore PEI cannot be

optimised by gradient descent with multiple starts which may cause excess evaluation

in high dimensions, although this also may easily be remedied by taking the max

over AD instead of A as with CLEVI and REVI.

By assuming maximum sparsity, the effect one sample has on other predictions

and on the target level itself is neglected and sampling is less efficient as we show in

Section 6.5, particularly when there are long length scales in the Gaussian process.

The advantage of maximum sparsity however is that there are fewer posterior

covariance calls which are each O(n2). Although the PEI algorithm was not designed

93



with noisy problems in mind, the authors note that the Gaussian process model

may easily be adapted to account for noise and the acquisition function itself is

still applicable. In our benchmarks we find that when the assumptions are satisfied,

negligible observation noise, uniform task distribution and unaffected target level,

the performances of PEI, CLEVI and REVI are similar. However, on more varied

scenarios PEI performs significantly worse than CLEVI and furthermore REVI

significantly outperforms both. In our numerical experiments with non-uniform task

distribution we modify the PEI algorithm to account for task density by weighting

the acquisition function according to the point-wise task density,

PEIdens(x, a) = P[x]E[max{yn+1 − T (x), 0}]

such that high density tasks are given priority when sampling and low density tasks

are only sampled if their improvement over their target level is high enough.

6.5 Numerical Experiments

We perform numerical three sets of experiments. In the first benchmark we use a

continuous distribution of tasks and the popular Rosenbrock optimisation benchmark

function comparing our algorithms against PEI and latin hypercube sampling. In

the second benchmark we investigate the effect of dimensionality upon the REVI and

CLEVI acquisition functions, we generate random functions from a Gaussian process

prior with dimensions varying from two to six, and again compare our algorithms

against PEI and uniform sampling. Finally we consider the discrete task case and

compare CLEVI and REVI against the SCoT algorithm [Bardenet et al., 2013] on

risk neutral and risk averse scenarios.

6.5.1 Rosenbrock Test Function

For the first continuous benchmark problem, we use the Rosenbrock test function

scaled such that it has domain X × A = [0, 100]2 and takes values in the range

y ∈ [−45, 0] and we add noise of variance σε ∈ {0.12, 1.02}. We test two different

task distributions, a uniform distribution P[X] = 1/100 and a triangular distribution

94



P[X] = X ∗ 2 ∗ 10−4 that will adversarially penalise methods that don’t take task

correlation into account. Two noise levels and two task distributions yield four

different experimental setups and for each setup we apply each algorithm 100 times

with different initial design and noise values. For each application, an initial budget

of 20 samples is allocated by latin hypercube over the X ×A domain after which a

Gaussian process with a squared exponential kernel is fitted. The hyper parameters

of the Gaussian process are estimated via maximum likelihood and updated after

every new sample. Samples are sequentially added to the initial design according to

four algorithms, PEI, CLEVI, REVI and finally LEVI which is the CLEVI algorithm

however without the convolution applied to the task distribution such that it is

simply the integrand of Equation 6.7. Each method is applied until a sampling

budget of 80 samples has been exhausted. We also compare against latin hypercube

sampling. To measure the quality of a mapping learnt by each method, for each

experiment, a test set of 250 tasks values, Xtest, are generated from P[x], and the

difference in performance between the true optimal a and the performance of the a

value determined by the mapping is averaged over all xi ∈ Xtest

Opportunity Cost =
1

250

∑
xi∈Xtest

max
a

θ(xi, a)− θ(xi, SN (xi))

The resulting average opportunity cost over 100 simulation runs for each algorithm

for each budget is given in Figure 6.5 as well as one exemplary final sample design

from each sampling method. All acquisition functions were maximised using the

Nelder-Mead optimisation algorithm with min{2n, 120} random restarts and all

default parameters in R’s “optim” function with the exception that the number of

iterations was reduced to 50.

We see that in all cases REVI is the quickest to converge to the true optimal

mapping and the CLEVI/LEVI methods are either similar or slightly worse. PEI

frequently converges more slowly and in experiments not shown here this performance

is replicated when using the CLEVI algorithm with maximum sparsity, therefore it

is probably the assumption of a fixed target level that prevents PEI from converging

as quickly. It is proven that in the infinite sample limit the PEI algorithm will

95



converge, however the finite time behaviour is apparently different. The length

scale in the parameter in the domain A is typically lA ≈ 122 while the largest

possible distance between two points is 100, thus a sample at (x, a)n+1 will affect

the model µn+1(xn+1, a) for all a ∈ A. Therefore, on this test function, the fixed

target assumption is violated. The same behaviour was observed on the Branin-

Hoo function that also has a length scale lA > 100 when the domain is scaled to

A = [0, 100]. The increase in noise reduces the speed of convergence, however does

not change the relative ranking of algorithms. Comparing the uniform distribution

with the triangular distribution, we see that the LEVI algorithm performs marginally

worse due to its failure to account for the difference between the mode of the task

distribution (which is also a boundary) and the maximum influence of a sample over

the task distribution which is away from the boundary.

In Figure 6.5, we see the final allocation of points over X × A. The PEI

algorithm allocates more samples to the predicted peak of each task however the

CLEVI and REVI algorithms allocate samples more evenly. REVI and CLEVI aim

to maximise the posterior mean of the model and therefore allocate samples such

that the whole model is updated to accurately predict the true peak and samples are

scattered around ±0.1lA of the true peak. This has the advantage that convergence

is quicker and since the samples are more spread out there will be less chance of

numerical issues when inverting the covariance matrix whilst fitting the Gaussian

process. This extra convergence must be traded off with the extra uncertainty over

the predicted peaks and in this problem setting with a risk neutral decision maker

REVI and CLEVI perform as expected. The CLEVI and REVI algorithms may be

easily modified to maximise a lower confidence bound instead of the posterior mean

(as done by Picheny et al. [2013a]) but we do not consider this case in our problem

formulation.

6.5.2 High Dimensional Test Functions

In our second benchmark we generate test functions from a Gaussian process prior

where the dimension of the task space X varies from one to five dimensions, DX ∈

{1, 2, 3, 5} and we fix DA = 1. We do this for two reasons. Firstly, we aim to create

96



0 20 40 60 80 100
0

20
40

60
80

10
0

Profile−EI

X

A

0 20 40 60 80 100

0
20

40
60

80
10

0

LEVI

X

A

0 20 40 60 80 100

0
20

40
60

80
10

0

REVI

X

A

(a) Final sampling allocations

●

●

20 30 40 50 60 70 80

5e
−

04
5e

−
03

5e
−

02

Uniform, 0.1^2

N

LHC
PEI
LEVI
CLEVI
REVI

●

●

20 30 40 50 60 70 80

0.
02

0.
05

0.
20

Uniform, 1.0^2

N

●

●

20 30 40 50 60 70 80

5e
−

04
5e

−
03

5e
−

02

Triangular 0.1^2

N

●

●

20 30 40 50 60 70 80

0.
02

0.
05

0.
20

Triangular 1.0^2

N

(b) Rosenbrock test function opportunity cost

●

●

20 30 40 50 60 70 80

0.
2

0.
5

1.
0

2.
0

5.
0

D_X = 1

N

LHC
PEI
LEVI
CLEVI
REVI ●

●

30 40 50 60 70 80 90

2
3

4
5

6

D_X = 2

N

●

●

40 50 60 70 80 90 100

2.
5

3.
0

4.
0

5.
0

D_X = 3

N

●

●

60 70 80 90 100 110 120

2.
5

3.
0

3.
5

4.
0

D_X = 5

N

(c) GP test functions opportunity cost

Figure 6.5: In all cases, REVI produces the best mappings for all experiments and
budget sizes, CLEVI and PEI are often equal, however diverge for large budgets
where noise variance becomes significant. For the Triangular distribution, REVI
outperforms other methods due to its ability to account for regional effects.

a scenario where the assumptions of PEI are met and show that it performs well in

this case, that is, where length scales are smaller than the domain and the target

level is not always changed by the new sample. This may be done by increasing DA

or by reducing lA, and to avoid sparsity we chose the latter. Secondly, the REVI

algorithm requires a Monte-Carlo integral which can perform poorly as the number

of dimensions increases. We initialise each sampling procedure with 10(DX + 1)

samples in a latin hypercube. In all experiments, we use a uniform task distribution.

97



Gaussian processes are well known to struggle in higher dimensions due to

either data sparsity in high dimensional space or the n3 computational cost or

matrix ill-conditioning when data is dense in high dimensional space. In preliminary

experiments, we found that all algorithms performed equal with latin hypercube

sampling for DX = 3, 5 when all length scales were lX = lA = 10. The initial design of

points was too sparse and the initial samples were allocated to fill empty space and the

advantages of REVI and CLEVI provided no significant benefit over PEI or uniform.

To create a scenario without the data sparsity we increase the length scale with

dimension such that the nearest neighbour in the initial design set is approximately

1.3∗L where L is the length scale of the kernel used for all dimensions. The resulting

length scales are 10, 16, 22, 28 and 33 for 1, 2, 3 and 5 dimensions, respectively,

where the X ×A space is [0, 100]DX+1 and the genertaing process signal variance is

σ2 = 102. The kernel parameters for generating the functions were also used when

fitting the Gaussian process, therefore the only difference between experiments is

the acquisition functions. We apply all the same algorithms as from the previous

benchmark, however the optimiser has more restarts min{(3+DX)n, 90+30DX} and

for REVI we set nX = (3 +DX)
√
n to be consistent with the previous experiment.

All function evaluations have a noise added, ε ∼ N(0, 1).

For the lowest dimensional case we see that all algorithms perform equally.

We see that as dimensions increases, the methods that neglect covarying tasks, PEI

and LEVI, get worse, and when DX = 5, they do not significantly differ from latin

hypercube sampling. Likewise, the REVI and CLEVI algorithms do not suffer as

much with increasing dimension. The tasks are uniformly distributed in a hypercube,

samples on the boundary of the hypercube have fewer neighbouring tasks which

may be improved by the sample. As the number of dimensions increases, there are

more edges, vertices and boundaries to avoid, and with increasing length scale the

boundary affects more space within the hypercube. The REVI function measures

the improvement at tasks XMC , and at boundaries there are fewer tasks and thus

smaller improvement in the mapping. Consequently, such areas are less favourable

to sample. For CLEVI, by taking the convolution of the task distribution, the sharp

boundaries in the true task distribution are rounded and reduced and CLEVI also

98



tends to sample away from boundaries.

6.5.3 Finite Tasks

In our third benchmark, we compare the discrete task versions of CLEVI and REVI

against the Surrogate based Collaborative Tuning algorithm, (SCoT) proposed by

Bardenet et al. [2013]. The SCoT algorithm tackles the complex problem of predicting

good hyper parameters for machine learning algorithms based on the features of

the dataset to which the algorithm is applied. Therefore, X is the space of dataset

features, A is the hyper parameters of a machine learning optimisation algorithm and

θ(x, a) is the test set accuracy of the trained algorithm with the given parameters

on the given dataset. The proposed algorithm fits a Gaussian process to predict

the test accuracy using algorithm parameters and dataset features. The method

sequentially executes a parameter setting on a dataset in order to learn the optimal

parameter setting for each dataset. At each iteration, the task is pre-determined

in a round robin fashion xi and for a given task, the parameter setting an+1 is

determined by maximising the expected improvement of a new measurement over

the current best measurement for the current task, that is by the EGO algorithm.

Therefore the SCoT algorithm is equivalent to repeated application of the second

stage of Algorithm 2. The authors note that the framework can accommodate any

acquisition function and we exchange the component with the Knowledge Gradient

acquisition function to determine an+1 while determining the task by round robin

allocation. Therefore, this algorithm is equivalent to the CLEVI algorithm without

the approximation to account for the influence on other tasks and where the task

sampling sequence is predetermined. We also again compare with random allocation.

We generate random test functions as with the DX = DA = 1 case described above,

however when sampling and measuring opportunity cost, task values are restricted

to a finite set of randomly generated numbers X = XMC = Xtest ∈ R20 that are

distributed according to x1, ..., x10 ∼ N(20, 102) and x11, ..., x20 ∼ N(50, 52). We

measure the opportunity cost using the two mappings discussed in Section 6.2: the

risk neutral mapping, executing the best predicted parameter for each task, and the

risk averse mapping, executing the best evaluated parameter for each task.

99



0 20 40 60 80 100

−
15

−
5

0
5

10
20

Test Functions

A

th
et

a(
x,

a)

(a)

Task Correlation

(b)

●

●

20 30 40 50 60 70 80

0.
00

2
0.

02
0

0.
20

0
2.

00
0

Risk Neutral OC

N

(c)

●

●

20 30 40 50 60 70 80

0.
01

0.
10

1.
00

10
.0

0

Risk Averse OC

N

LHC
KGSCOT
SCOT
CLEVI
REVI

(d)

Figure 6.6: (a) one test function realisation, (b) one example task covariance matrix,
(c) and (d) opportunity cost for a risk neutral/averse user averaged over 200 test
function realisations.

As can be seen in Figure 6.6, in the risk neutral case, REVI and CLEVI

perform best for all budget sizes. Replacing EGO with Knowledge Gradient in

the SCoT algorithm did not yield much improvement suggesting that forcing the

task allocation to be round robin accounts for most of the performance difference

between CLEVI and SCoT. The REVI and CLEVI algorithms without the risk averse

modification perform worse than both variations of SCoT and are not shown on the

100



plot. However, with the risk averse modification, there is a very large improvement

and therefore optimising the posterior mean before optimising the sample values

yields a great benefit. In general, the risk averse opportunity cost is higher than

the risk neutral, demonstrating the price a risk averse user must pay. In both cases,

REVI and CLEVI do not differ significantly, suggesting a small number of positively

correlated tasks in low dimensions do not benefit from the added accuracy of REVI,

although further investigation is required.

6.6 Conclusion and Future Work

We have considered the problem of simultaneously identifying the optimal parameters

for a set of tasks with correlation across tasks and where the performance of a

particular parameter on a particular task has to be inferred from (potentially noisy)

samples. To this end, we provide a general problem formulation, and propose

two myopic information collection policies, CLEVI and REVI, that both aim to

approximate the overall improvement across all tasks. CLEVI aims to maximise

the expected improvement at the sampled task, weighted according to the regional

influence the sample is expected to have, whereas REVI more accurately takes

into account the regional influence, the information gain for other tasks due to the

correlation structure. As expected, while CLEVI is computationally cheaper, REVI

performs better, and both methods have equal leading order worst case complexity.

We show that an alternative algorithm developed for the same problem, Profile

Expected Improvement, that we consider state of the art from the literature, is a

special case of our CLEVI algorithm and under certain conditions its performance is

comparable. However, in almost all cases CLEVI and REVI converge toward the

true optimal mapping much faster. Further empirical tests show that on discrete task

sets, CLEVI and REVI also significantly outperform the SCoT algorithm, another

algorithm from the literature, by a wide margin.

Furthermore, we have pointed out that the problem can be considered with

two possible goals: identifying a mapping that predicts the best parameter setting for

any given task, and identifying a mapping that selects the best sampled parameter

101



setting for each task. The latter is sensible in particular for a risk averse decision

maker under a deterministic setting with a small number of tasks. We demonstrate

that for such a setting, one should still collect information based on REVI, but

switch to round robin allocation with the task conditional EI (SCoT algorithm) for

selecting the last sample for each task.

There are several possible avenues for future work. In this work we have

not considered model mismatch, real-world applications essentially always have

model mismatch and this can affect the relative performance of Bayesian ptimisation

algorithms as demonstated by Schulz et al. [2016]. The REVI algorithm in particular

maximally exploits covariance across tasks and parameters and will likely suffer

the most from inaccurately estimated covariance structure. Therefore the question

remains, can exploiting poorly estimated covariance (REVI) be worse than ignoring

only task covariance (CLEVI) or ignoring all covariance (PEI, SCoT)? To this end

the proposed algorithms should be applied to various real world problems, including

those applications mentioned in the introduction, to reveal any application specific

flaws or benefits. An extension to batch parallel sampling should be straightforward

and speed up optimisation in practice. The distinction between searching for the

solution with the best estimated performance, and searching for the solution with

the best sampled performance, applies to all types of problems where Bayesian

ptimisation is used, and should be examined also in other contexts. Finally, one

might consider other notions of risk aversion, such as lower confidence bound, instead

of the single extreme case we consider.

102



Chapter 7

Bayesian Optimization with

Uncertain Inputs

7.1 Introduction

Simulation optimization, i.e., the search for a design or solution that optimizes

some output value of a simulation model, allows to automate the design of complex

systems and has many real-world applications. However, a simulation is never a

perfect model of reality. When constructing the simulation model, the decision

maker often faces the challenge of defining proper distributions for the stochastic

components within a simulator e.g. the mean of an arrival time distribution. In

particular, if the parameters for these distributions are estimated from real world

data, multiple possible parameters may be a suitable fit. This issue, generally known

as “input uncertainty” of “input distributions”, has obtained increasing interest of

the simulation community in recent years.

In this chapter, we adapt the two successful and well-known simulation

optimization methods introduced in Chapter 3, namely Efficient Global Optimization

(EGO) and Knowledge Gradient (KG), to allow for input uncertainty. We assume

that the design as well as the possible input distributions can be described by some

continuous parameters and that one has a probability distribution over the parameter

determining the input distribution. For example, if the input distribution parameters

103



are estimated by a group of experts, and the different opinions are aggregated into

one probability distribution over the input distribution parameter. We furthermore

assume that the output of the simulation model is correlated across designs as well

as input distribution parameters. Then, given a budget of simulation runs each with

a given design and input distribution parameter, the goal is to identify the design

with the best expected performance over the distribution of likely input distribution

parameters.

We start with a formal definition of the problem in Section 7.2. Section 7.3

explains the newly proposed methods for simulation optimization in the presence of

input uncertainty, which are then empirically tested and compared to some synthetic

benchmarks in Section 7.4. We then conclude with a summary and some suggestions

for future work.

7.2 Problem Definition

Given a simulation model with a tunable parameter that specifies the possible designs

a ∈ A (as opposed to “tool” or “parameter” as in previous chapters) and an input

distribution with parameter x ∈ X (henceforth simply called “input”) following

an assumed distribution P[x] independent of a. When running a simulation with

design a and input x, we observe an output following an unknown noisy function

f(x, a) = θ(x, a) + ε where θ(x, a) = E[f(x, a)] is a deterministic latent function

defining the expected outcome and ε ∼ N(0, σ2
ε ) is independent white noise with

constant variance. The objective of the user is to identify the design a that maximizes

the expected performance simultaneously across the input parameter distribution

F (a) =

∫
X
θ(x, a)P[x]dx. (7.1)

We assume we have a fixed budget of N samples (simulation runs with a specific

design and input), and that we can sample iteratively, i.e., we can select the design

and the input from which to sample performance f(x, a) based on the information

collected so far.

Although for reasons of simplicity we use scalar notation, the approach applies

104



to multi-dimensional inputs and designs.

7.3 Sampling Methods

In this section, we show how to modify two well known global optimization methods,

Efficient Global Optimization (EGO) and Knowledge Gradient with Continuous

Parameters (KG) to the case of input uncertainty. We assume that we can use a

Gaussian process to model the underlying latent performance function θ(x, a) given

the data observed. For simplicity, let us denote the location and value of the n-th

observation by xn, an and yn. Given all the data collected (x1, a1, y1), ..., (xn, an, yn),

define X̃n = {(x1, a1), ..., (xn, an)} and Y n = (y1, ..., yn), and the sigma algebra

Fn generated by all the data σ{(x1, a1, y1), . . . , xn, an, yn)}. Again, we restate the

posterior Gaussian process mean and kernel,

E[θ(x, a)|Fn] = µn(x, a)

= µ0(x, a) (7.2)

−k0((x, a), X̃n)(k0(X̃n, X̃n) + Iσ)−1(Y n − µ0(X̃n))

Cov[θ(x, a), θ(x′, a′)|Fn] = kn((x, a), (x′, a′))

= k0((x, a), (x′, a′)) (7.3)

−k0((x, a), X̃n)(k0(X̃n, X̃n) + Iσ)−1k0(X̃n, (x′, a′))

where µ0(x, a) is the prior mean which is typically set to µ0(x, a) = 0 and k0((x, a), (x′, a′))

is the kernel of the Gaussian process. In Section 7.4, we use the popular squared

exponential kernel, though also the Matérn class of kernels has been widely used for

simulation optimization.

7.3.1 Efficient Global Optimization for Input Uncertainty

The well-known EGO algorithm sequentially collects objective function evaluations

and was originally designed for deterministic global optimization problems. It starts

by evaluating the function at a randomly distributed set of inputs to the function.

Then, the location of the next sample is determined by maximizing the expected

105



improvement of a new function evaluation over the current best evaluation. The pre-

dictive distribution of the new noiseless sample is given by yn+1 ∼ N(µn(a), kn(a, a))

and so the expected improvement over the current best of a hypothetical sample at

parameter a is given by

EGO(a) = E[max{y1, ..., yn+1(a)}]−max{y1, ..., yn} (7.4)

= E[max{0, yn+1(a)−max{y1, ..., yn}}] (7.5)

= ∆(a)Φ(∆(a)/σ(a))− σ(a)φ(∆(a)/σ(a)) (7.6)

where φ(a) and Φ(a) are the standard normal density and cumulative functions,

∆(a) = µn(a)−max{y1, ..., yn} and σ(a) =
√
kn(a, a). Note that in Equation 7.5,

the expectation is over the maxima of two linear functions of yn+1, one is the identity

and the other is the constant function, and yn+1 is normally distributed. When

function evaluations are deterministic, the previous best sample value is the “target

level”, maxY n, and it does not change with the new sample. The EGO acquisition

function given in Equation 7.6 is easily and cheaply optimised to find the location of

the most promising new function evaluation, an+1, and then the objective function

is evaluated and a yn+1 = f(an+1) is observed. The Gaussian process model is

updated and the search for the location of the next sample is performed again and

the algorithm repeats until the budget of function evaluations is exhausted.

Adapting this method to allow for noise and input uncertainty we need to

answer two questions, namely what is the value of the current best upon which we

aim to improve, and what is the predictive distribution of the value after a new

hypothetical sample is generated. We calculate a prediction of the current best

upon which we aim to improve by adapting Equation 7.1, replacing the unknown

θ(x, a) with the model prediction, µn(x, a), and the continuous integral over X

can be replaced by a Monte-Carlo integral, a summation over NX random inputs

XMC = {x1, ..., xNX} ∼ P[x]

F̂n(a) =
1

NX

∑
xi∈XMC

µn(xi, a).

106



Then, the current best upon which we aim to improve, the target level for this

application, is found by maximizing F̂n(a) over a. This maximization can be done

cheaply using any off-the-shelf optimization algorithm as the function is based only

on posterior means. This is further explained in Section 7.4. NX is a parameter that

may be chosen by the user to determine accuracy and in Section 7.4 we use NX = n,

so that accuracy increases over the run.

In order to answer the second question, we require an updating formula for

the posterior mean to derive the predictive distribution of F̂n+1(a) given only the

data available at time n. Exactly as derived in Chapter 3.3.1, this is simply a change

of indices in the posterior mean equation, 7.2, and the predictive distribution of the

new posterior mean is then given by

µn+1(x, a) ∼ N(µn(x, a), σ̃((x, a); (x, a)n+1)2)

The predicted performance after a new sample can then be written as

F̂n+1(a; (x, a)n+1) =
1

NX

∑
xi∈XMC

µn+1(xi, a)

=
1

NX

∑
xi∈XMC

µn(xi, a) (7.7)

+Z
1

NX

∑
xi∈XMC

σ̃n(xi, a; (x, a)n+1)

= F̂n(a) + Z Σ̂n(a; (x, a)n+1).

where Σ̂n(a, (x, a)n+1) is given by the final term in Equation 7.7. The predictive

distribution of the new design a after a random sample at (x, a)n+1 is then given by

F̂n+1(a; (x, a)n+1) ∼ N
(
F̂n(a), Σ̂n(a; (x, a)n+1)2

)
.

The above summation does not include the sampled input xn+1 however this can be

included with a unique weighting and is discussed in Section 7.3.3. The expression

gives the updated value for arbitrary a caused by a new sample at (x, a)n+1. If we

only consider the updated value at the sampled design an+1 = a then the expected

107



improvement over the previous optimal predicted design is given by

EGO(x, a) = E[max{max
a′

F̂n(a′), F̂n+1(a; (x, a))}]−max
a′

F̂n(a′)

= E[max{0, F̂n(a)−max
a′

F̂ (a′) + ZΣ̂n(a; (x, a))}]

= E[max{0,∆(a) + ZΣ̂n(a; (x, a))}]

= ∆(a)Φ(∆(a)/Σ̂n(a))− Σ̂n(a)φ(∆(a)/Σ̂n(a))

where ∆(a) = F̂n(a)−maxa′ F̂
n(a′) and Σ̂n = Σ̂n(a; (x, a)). Samples are sequentially

allocated to (x, a) pairs that maximise EGO(x, a). After each sample, the Monte-

Carlo points, XMC , may be regenerated to avoid overfitting to one particular

discretization of the distribution P[x].

7.3.2 Knowledge Gradient for Input Uncertainty

The EGO algorithm compares the value at the current best design (which is assumed

to be fixed) with the value at the new sampled design. The Knowledge Gradient

compares the values across a range of designs (all are correlated with yn+1) with the

new highest value across the same range of designs. We define the set of previously

evaluated designs as An = {a1, ..., an}. Hence An+1 includes the next sampled design

an+1. Traditional Knowledge Gradient for Continuous Parameter using Gaussian

processes Scott et al. [2011a] allocates samples to maximize the following acquisition

function

KG(a) = E[ max
a′′∈An+1

{µn+1(a′′)}]− max
a′∈An+1

{µn(a′)}

= E[max{µn+1(a1), ..., µn+1(an), µn+1(a)}]− max
a′∈An+1

{µn(a′)}

= E[max{µn(a1) + Zσ̃(a1; a), ..., µn(a) + Zσ̃(a; a)}]− max
a′∈An+1

{µn(a′)}

= E[max{c1 + Zm1, ..., cn+1 + Zmn+1}]

where ci = µn(ai)−maxa′∈An+1 µn(a′) and mi = σ̃n(ai, a). The final expectation is

the maximum of (n+ 1) linear functions with a normally distributed argument and

may be computed using Algorithm 1 in Chapter 6.3. In contrast, EGO(a) is the

maximum over only two linear functions with a normally distributed argument as

108



a result of not accounting for changes in the posterior mean at unsampled designs

a 6= an+1. We adapt KG(a) to the input uncertain case KG(x, a) by replacing µn(a)

and σ̃(a, an+1) in the above equations with their Monte-Carlo counterparts F̂n(a)

and Σ̂n(a; (x, a)n+1).

KG(a, x) = E[ max
a∈An+1

{F̂n+1(a)}]− max
a′∈An+1

{F̂n(a′)}

= E[max{F̂n(a1) + ZΣ̂n(a1; (x, a))), ..., F̂n(a) + ZΣ̂n(a; (x, a))}]

− max
a′∈An

{F̂n+1(a′)}

= E[max{c1 + Zm1, ..., cn+1 + Zmn+1}]

where ci = F̂n(ai) − maxa′∈An+1 F̂n(a′) and mi = Σ̂n(ai, (x, a)) and the average

is still computed using the same Algorithm 1 in Chapter 6.3. The equations are

a “drop-in” replacement! As with the adapted EGO algorithm, this KG for input

uncertainty algorithm also has a single parameter NX that determines the granularity

of the Monte-Carlo integration and can be chosen by the user. In our benchmarks we

again set NX = n so that the accuracy increases with the sample size over the run.

7.3.3 Including the Sampled Input in the Monte-Carlo Integral

The proposed Monte-Carlo integral may be improved by importance sampling

by setting XMC ∼ G[x] where G[x] is a proposal distribution. For example,

G[x|(x, a)n+1] ∝ P[x]Σ̂n((x, a), (a, x)n+1). Meaning that in order to minimise error

the Monte-Carlo integral should focus samples where the density of input parameters

is high, large P[x], and also where the new function evaluation has great effect on the

prediction of other the model at other locations, large σ̃((x, a), (a, x)n+1). Instead,

the above proposed methods set XMC ∼ P[x], focusing the integration only where

P[x] is high. Alternatively, when using a stationary kernel, one may set XMC to be a

cluster around xn+1 so that samples are allocated to where G[x] ∝ σ̃((a, x), (a, x)n+1).

However, as discussed in Section 6.3.4, in practice this second approach leads to

expensive computation and the EGO and KG functions become less smooth and

harder to optimise. In order to appropriately focus the Monte-Carlo integration

whilst still being generalisable to any input uncertainty distribution and kernel we

109



therefore propose a third way, a mix of these two possible approaches. Using a

standard Monte-Carlo integral as well as the sampled point xn+1 which may be seen

as a cluster of size 1 focused where Σ̂n(a, (an+1, xn+1)) is likely to be greatest. The

sampled input is not a sample from P[x] therefore simply including the input in

the Monte-Carlo sum would lead to bias, for example if P[xn+1] = 0, the sampled

input should not be included at all. Therefore we include the sampled input with

a unique weight that assumes it is from a single point from a uniform distribution

G[x] = 1/VX where VX =
∫
X dx is the volume of the input parameter domain.

Therefore the importance weight is simply P[xn+1]/G[xn+1] = P[xn+1]VX . Therefore

we may adjust the Monte-Carlo integrals as follows

F̂n(a;xn+1) =
1

NX + 1

 ∑
xi∈XMC

µn(xi, a) + P[xn+1]Vxµ
n(xn+1, a)


Σ̂n(a; (x, a)n+1) =

1

NX + 1

( ∑
xi∈XMC

σ̃n((xi, a); (x, a)n+1)

+P[xn+1]Vxσ̃
n((xn+1, a); (x, a)n+1)

)
.

Secondly, we combine the original Monte-Carlo integral and the single sample Monte-

Carlo integral according to their sample size NX and 1. The modified Monte-Carlo

integrals may be directly used in the EGO(x, a) and KG(x, a) and are used for the

numerical experiments in Section 7.4.

7.4 Numerical Experiments

We apply the new algorithms to two benchmarks based on the same test function but

with different assumed distributions of the input. The set of inputs is X = [0, 100],

the set of designs is A = [0, 100] and the test function θ : X ×A→ R. We generate

a synthetic test function by sampling from a Gaussian Process with a squared

exponential kernel with hyper-parameters lX = 10, lA = 10, σ2
0 = 1, σ2

ε = (0.1)2,

the test function θ(x, a) is shown in Figure 7.1 (a) top. The first input parameter

distribution is uniform P[x] = 1/100, thus the sampling procedure must sample

across all inputs to learn about the best alternative. The second distribution is

110



 −1 

 −1 

 −1 

 −1 

 −1 

 −0.5 

 −0.5 

 −0.5 

 −0.5 

 −0.5 

 −
0.

5 

 0 

 0 

 0 

 0 

 0 

 0.5 
 0.5 

 0.5 

 0.5 
 1 

 1 

 1 

 1 

 1 

 1 
 1 

 1.5 

 1.5 
 1.5 

 1.5  2 

0
20

40
60

80
10

0
X

 −0.6 

 −0.6 

 −0.4 

 −0.4 
 −0.4 

 −0.2 

 −0.2 
 0 

 0 

 0.2  0.2 

 0.2 

 0.4 

 0
.4

 
 0

.6
 

0
20

40
60

80
10

0

●

●

●

●

●

●

●

●

●

●

X

 0.2 

 0.2 

 0.2 

 0.4 

 0.4 

 0.4 

 0.6 

 0.6 

 0.6 

 0.8 
 0.8 

 0.8 

 0.8  1 

 1  1.2 

 1.4 

0
20

40
60

80
10

0

X

●

●

●

●

●

●

●

●

●

●

●

 −0.5 

 −0.5 

 −0.5  −0.5 

 0 

 0 

 0 

 0.5 

 0.5 

 0.5 

 0.5 

 1 
 1 

 1.5  1.5 

 2 

0
20

40
60

80
10

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

X

0 20 40 60 80 100

−
0.

5
0.

0
0.

5
1.

0
F

(a
)

(a) θ(x, a), F (a)

0 20 40 60 80 100
−

1.
5

−
0.

5
0.

5
1.

5
F̂

10
(a

)

(b) UNI: µ10(x, a)

 0.1 

 0.1 

 0.1 

 0.1 

 0.2 

 0.2 

 0.2 

 0.2 

 0.3 

 0.3 

 0.3 

 0.3 

 0.4 

 0.4 

 0.4 

 0.5 

 0.5 

 0.5 

 0.6 

 0.6 

 0.6 

 0.6 

 0.7 

 0.7 

0 20 40 60 80 100

0
20

40
60

80
10

0

X

●

●

●

●

●

●

●

●

●

●

●

(c) UNI: EGO, KG

0 20 40 60 80 100

−
1.

5
−

0.
5

0.
5

1.
5

F̂
10

0 (a
)

(d) UNI: µ100(x, a)

 −0.2 

 −0.2 

 −0.1 

 −0.1 

 0 

 0 

 0.1 

 0.1 

 0.2 

 0.2 

 0.2 

 0.2 

 0.2 
 0.3  0.3 

 0.3 

 0.3 

 0
.3

  0.4 

 0.4 

 0.4 

 0.5 

 0.5  0.7 

0
20

40
60

80
10

0

●

●

●

●

●

●

●
●

●

●

X

 0 

 0.5 

 0.5 

 0.5 

 1 

 1 

 1 

 1 
 1.5 

0
20

40
60

80
10

0

X

●

●

●

●

●

●

●
●

●

●

●

 −0.2 

 −0.2 

 −0.2 

 0 

 0 
 0 

 0.2 

 0.2 

 0.2 

 0.2 

 0.2 

 0.2 

 0.
2 

 0.4 

 0.4 

 0.4 

 0.4 

 0.4 

 0.6 

 0.6 

 0.6 

 0.8 

 0.8 

 1 

 1.2 

 1.2 

 1.4 

 1
.4

 

 1.6 

0
20

40
60

80
10

0

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

X

0 20 40 60 80 100

−
1.

5
−

0.
5

0.
5

1.
5

F̂
10

(a
)

(e) TRI: µ10(x, a)

 0.1 

 0.1 

 0.1 

 0.1 

 0.1 

 0.1 

 0.1 

 0.2 
 0.2 

 0.2 

 0.3 

 0.3 

 0.3 

 0.3 

 0
.3

 

 0.4 

 0.4 

 0.4 
 0

.4
 

 0.4 

 0
.4

  0.5 

 0.5 

 0.5  0.5 

 0.6 

 0.6 

 0.6 

 0.6 

 0.6 

 0
.6

 

 0.7 
 0.7 

0 20 40 60 80 100

0
20

40
60

80
10

0

X

●

●

●

●

●

●

●
●

●

●

●

(f) TRI: EGO, KG

0 20 40 60 80 100

−
1.

5
−

0.
5

0.
5

1.
5

F̂
10

0 (a
)

(g) TRI: µ100(x, a)

Figure 7.1: In all plots, A is on the horizontal axis, small points represent function
evaluations. (a) θ(x, a) and F (a) measured using the uniform test inputs (black) and
triangular test inputs (red). µ10(x, a) and F̂ 10(a) with upper and lower confidence
bounds after 10 samples are shown for uniform inputs (b) and triangular inputs
(e). (c) and (f) top EGO(x, a), bottom KG(x, a) after the initial 10 samples with
uniform inputs (c) and triangular inputs (f), large points show the peaks. (d) and
(g) µ100(x, a) and F̂ 100(a) (with F̂ 10(a) in grey) after 100 samples allocated by EGO,
(d) uniform and (g) triangular.

a triangular distribution P[x] = x 2
10,000 such that the mode input is x = 100 and

the mean input is x = 66.67 and the sampling procedure must prioritize high P[x].

Given these input parameter distributions, the true F (a) is calculated via numerical

integration and shown in Figure 7.1 (a) bottom.

At the start of sampling, 10 samples are allocated by the random sampling

methods described below, the Gaussian process prediction of θ(x, a) and F̂ 10(a)

after the initial allocation are shown in Figures 7.1 (b) and (e) for the uniform and

triangular distribution cases respectively. Then the sequential methods are used to

allocate an additional 90 samples reaching a full budget of 100, Figures 7.1 (d) and

111



(g) show θ(x, a) and F̂ 100 after 100 samples have been allocated according to EGO.

Then, based on the learned Gaussian Process model, the design a∗ with the largest

predicted performance over a sample of 1000 inputs, XR, is recommended to the user

a∗ = argmax
a′

F̂N (a′) = argmax
a′

1

1000

∑
xi∈XR

µN (xi, a
′)

where F̂N (a) is optimized by evaluating for all integer values a ∈ 0, 1, ..., 100 and

the highest value is used as a seed for sequential parabolic interpolation to find the

optimal a∗ to high accuracy.

The quality of the sampling procedure is determined by the opportunity cost,

the difference in true performance between the design with the highest predicted

value and the true best design, which is measured over a separate random sample

of 1000 inputs Xtest that have not been used in the algorithm. The true value of a

given alternative is calculated by

F (a) =
1

1000

∑
xi∈Xtest

θ(xi, a).

Therefore the opportunity cost is given by

Opportunity Cost = max
a′

F (a′)− F (a∗). (7.8)

Code is available online for all experiments and benchmarks at http://www2.

warwick.ac.uk/fac/cross_fac/complexity/people/students/dtc/students2013/

pearce/.

7.4.1 Benchmark Methods

• Random Sampling Given a budget N , samples are randomly distributed over

the joint input-design space by Latin Hyper Cube (in the uniform input case)

or by sampling from the input distribution and latin hypercube in the A space.

We consider this the simplest uninformed brute-force approach.

• EGO on the mean and mode input We apply a single parameter EGO to the

112

http://www2.warwick.ac.uk/fac/cross_fac/complexity/people/students/dtc/students2013/pearce/
http://www2.warwick.ac.uk/fac/cross_fac/complexity/people/students/dtc/students2013/pearce/
http://www2.warwick.ac.uk/fac/cross_fac/complexity/people/students/dtc/students2013/pearce/


●

●

20 40 60 80 100

5
10

20
50

10
0

20
0

Budget N

O
C

UNI OC

(a)

20 40 60 80 100

1
0

2
0

5
0

1
0

0
2

0
0

Budget N

O
C

WEDGE OCTRIANGULAR OC

(b)

Figure 7.2: (a) the opportunity cost when the input distribution is uniform, (b) when
the input distribution is triangular. EGO on the mean input (red, solid) and mode
input (red, dashed) perform worst, followed by Random Sampling (pink) which is
significantly worse than EGO (green) and KG (blue).

mean input and to the mode input. This represents a typical approach used

in practice, where the input uncertainty is simply reduced to using the most

likely or avergae input parameter value. Technically this is equivalent to using

the EGO algorithm described above with only one constant sample in the

Monte-Carlo integral. In the uniform case we only use the mean input x = 50,

and in the triangular case we use the mean x = 66.67 and the mode x = 100.

At the end of sampling the best a on the single input alone is recommended

while opportunity cost is measured over all test inputs.

7.4.2 Results

F̂n(a) provides a point estimate of the true performance,
∑
θ(xi, a), averaged over a

given set of inputs, XMC , the posterior variance of the estimate is given by

1

N2
X

∑
xi∈XMC

∑
xj∈XMC

kn((xi, a), (xj , a))

and is plotted in Figure 7.1 as confidence bounds. In Figures 7.1 (d) and (g) it can

be seen that samples are focussed around the true optimal a and the error in F̂ 100(a)

113



is much lower around the optimal a.

In Figure 7.2, in both cases applying EGO to the mean input and the mode

input results in the opportunity cost not decreasing to zero and the algorithm

converges to the wrong design, so reducing input uncertainty to just a typical input

parameter value leads to inferior solutions. In this example, the EGO focusing on

the mode input even converges to a solution that is worse than the solution obtained

after the initial 10 samples of the methods that take input uncertainty into account.

Of the methods that account for input uncertainty, KG works best, followed by EGO

and then the simple random sampling.

7.5 Conclusion

When building a simulation model, the user usually faces the challenge to define

proper input distributions. Input uncertainty arises when one is not completely

certain what distributions and/or parameters to use. In this paper, we proposed two

simulation optimization methods based on EGO and KG ideas that are able to take

into account input uncertainty, and identify the design that has the best expected

performance over the assumed known distribution of input distribution parameters.

Numerical experiments demonstrated that the new algorithms indeed sample

the search space very efficiently, and are much more efficient than random sampling.

The approach to simply use EGO on a typical input distribution parameter such as

the mode or the mean of the assumed distribution clearly performed worse, which

demonstrates the importance of properly accounting for input uncertainty.

There are various avenues for future work. While we assumed in this chapter

that the design space and the input distribution parameter space can each be

described by a single continuous parameter, the proposed methods should also be

tested in higher dimensions and with discrete parameters. It would be interesting

to examine the impact of parameter Nx. Finally, one could consider worst case

performance rather than expected performance.

In the next Chapter, we extend the KG for input uncertainty to to simulation

optimisation with common random numbers.

114



Chapter 8

Bayesian Optimization with

Common Random Numbers

8.1 Introduction

We consider the problem of expensive stochastic optimization with limited evaluations,

arg max
x∈X

E[θ(x, s)] (8.1)

where θ(x, s) is a real valued output, X ⊂ Rd is the solution space, usually given

by box constraints for continuous variables, or a set of discrete alternatives. The

parameter s represents all of the stochasticity in the objective, i.e., θ(x, s) is determ-

inistic. For example, s may be the seed of a pseudo random number generator that

is called within a simulator. Hence evaluating multiple x with the same s will reuse

a set of common random numbers (CRN). Alternatively, the seed s and random

number stream uniquely define a “scenario” passed to the objective function, and

the aim of optimization is to find an x ∈ X that is the best averaged over all possible

randomly generated scenarios. Example applications include

• Control and Reinforcement Learning: x are parameters of a control

policy, s defines a randomly generated environment (e.g. maze, race track,

terrain) and θ(x, s) is final reward.

115



• Machine Learning: x are hyperparameters of a machine learning algorithm

or model, s defines a random split of training data into train and validation,

and θ(x, s) is test set accuracy.

• Simulation Optimization: In many optimization problems, a solution can

only be evaluated by a stochastic simulator whose seed s we may choose.

In this work we empirically investigate the the following two simulation optimization

applications.

• Inventory Management: x are target inventory levels below which more

stock is ordered, s defines a random stream of customers and θ(x, s) is profit.

• Base Location: x are spatial locations of ambulance bases, s defines times

and locations of patients randomly appearing across the map, and θ(x, s) is

average ambulance journey time.

From a surrogate modelling perspective, as a result of using CRN, the noise corrupting

the objective output has covariance for outputs with the same seed. This is in

contrast to the common assumption of independent noise for the objective outputs.

For example, the seed s may influence the difficulty of a randomly generated scenario,

and the performance of all solutions x ∈ X degrades for difficult scenarios and

improves for easy scenarios.

Traditionally, CRN has been exploited by considering the reduction in variance

of performance differences, θ(x, s) − θ(x′, s), as CRN typically induces a positive

correlation in noise, and

Var(θ(x, ·)− θ(x′, ·)) = Var(θ(x, ·)) + Var(θ(x′, ·))− 2Cov(θ(x, ·), θ(x′, ·)).

There have been several previous works that focus on evaluating pairs of solutions or

multiple comparisons either “with CRN” or “without CRN”.

In this work we take a different perspective. The domain of the objective

is the cross-product of a solution space and a positive integer seed X × {1, 2, ....}.

Therefore, the surrogate model is defined over the same X × N+. Similarly, the

algorithm needs to propose the next (x, s) ∈ X × N+ and evaluate θ(x, s). The

116



target of optimisation is to learn θ̄(x) = E[θ(x, s)] hence data is collected to learn

argmax
x

θ̄(x). Given this perspective, we emphasize that the benefit in using CRN

comes from the emergent structure in the noise, i.e., how the output for a single seed

is uniquely different from the average over seeds,

εs(x) = θ(x, s)− θ̄(x). (8.2)

In particular, if εs(x) = os is the constant function, this implies that argmax
x

θ̄(x) =

argmax
x

θ(x, s) and it is sufficient to optimize a single seed s. Thus, first we propose

a Gaussian process model for θ(x, s) that also yields a method for inferring θ̄(x)

and is a generalization of standard models. Second, we propose the Knowledge

Gradient for Common Random Numbers (KGCRN) that quantifies the value of a

new point in X × N+ for learning the optimizer of the average over infinitely many

seeds, argmax θ̄(x). Optimizing KGCRN determines the most beneficial combination

of solution x executed with seed s to efficiently learn argmax
x

θ̄(x). The KGCRN

algorithm is therefore able to automatically trade-off the benefits of evaluating x

with a previously evaluated seed, thereby utilizing CRN, and of evaluating x with

a fresh new seed, by simply maximizing the expected benefit. This removes both

the need to observe multiple x simultaneously in a batch with CRN or the need to

consider differences in pairs of outputs evaluated with CRN. However, we point out

that our KGCRN algorithm can easily be extended to batch acquisition, e.g., using

the technique of Wu et al. [2017].

In the following section we formally define the problem, Section 8.2. In

Section 8.3, we describe and motivates the proposed surrogate model and Section 8.4

derives the new acquisition procedure and discuses practicalities. In Section 8.5 we

draw parallels with a previous approach based on pairwise sampling. An empirical

evaluation on both synthetic experiments and two of the applications mentioned

above are presented in Section 8.6. The paper concludes in Section 8.7.

117



8.2 Problem Definition

A user is given an expensive-to-evaluate, real valued function θ : X × N+ → R with

arguments composed of a solution x ∈ X ⊂ Rd from solution space and a nominal

positive integer seed s ∈ N+. We refer to θ(x, s) as the objective function. The

random seed s controls all stochasticity in the function, i.e., θ(x, s) is deterministic.

The aim is to identify the solution x that maximizes the expectation of the objective

over random number streams

arg max
x

θ̄(x) = arg max
x

E[θ(x, ·)]

and we refer to θ̄(x) as the target. There is a limited budget of N objective function

calls, and for each call, the user can choose an input pair (x, s) from the acquisition

space, then observe y = θ(x, s). Objective function evaluations may be collected

sequentially so that after n measurements the user may determine the x and s for

the (n+ 1)th function evaluation.

If every call to the function uses a new unique random seed, the problem

reduces to standard stochastic optimization and the user only needs to determine

x values for each evaluation of θ(x, s). The problem considered here is therefore a

more general setting that allows the reuse of random number seeds by making the

argument s explicit.

8.3 A Surrogate Model for Simulation with Common

Random Numbers

Given a budget of N calls to θ(x, s), the proposed Bayesian optimization algorithm

has two phases, an initialization phase where we evaluate a small number of candidates

ninit � N , chosen as a space filling design in X×{1, 2, 3, 4, 5}. That is, we instantiate

five (randomly chosen) seeds to collect data points that are then used to fit a Gaussian

process model. The GP model is combined with an acquisition function (infill criteria)

to sequentially allocate the remaining N − ninit points of the budget, updating the

model after each new point and determining the next point. We first describe the

118



model of θ(x, s) and then propose the Knowledge Gradient for Common Random

Numbers in Section 8.4.

8.3.1 The Gaussian Process Generative Model

A generative model is a probability distribution over all observable and unobservable

quantities and such a model can be sampled to generate realizations of all variables

thereby synthesizing data. Inference is the task of estimating the unobserved variables

that are consistent with the generative model and the observed quantities. In the

case of optimization with CRN, we desire a generative model with two properties.

First, sampling outputs from the generative model assuming each output comes

from a different seed must recover a model used without CRN. Second, the seeds are

labeled with arbitrary numbers, in particular, there is no exploitable “neighborhood”

between seeds.

Following previous works without CRN, we first assume that the target, θ̄(x),

is a realization of a Gaussian process with constant prior mean and covariance given

by a kernel such as a 5
2 -Matérn or squared exponential,

θ̄(x) ∼ GP
(
µ̄, kθ̄(x, x

′)
)
. (8.3)

When all seeds are unique, e.g., si = i, output y values are generated by adding

independent and identically distributed Gaussian noise y ∼ N(θ̄(x), σ2
ε (x)). Given

n solutions Xn = (x1, ..., xn), the vector of outputs, Y n = (θ(x1, 1), ..., θ(xn, n)), is

assumed to be a single multivariate Gaussian random vector with constant mean µ̄

and a covariance matrix composed of a kernel matrix and diagonal noise matrix

Y n ∼ N
(
µ̄, kθ̄(X

n, Xn) + diag(σ2
ε (X

n))
)
. (8.4)

For θ(x, s) in the CRN setting, we require a kernel over acquisition space X̃ = X×N+

that when evaluated for unique seeds recovers the above covariance matrix. To satisfy

all zero off-diagonal elements for unequal seeds, we require a Kronecker delta function

over seeds (white noise), to model covariance in outputs for the same seed we require

119



another kernel over X ×X. We propose the following model for the objective,

θ(x, s) ∼ GP
(
µ̄, kθ̄(x, x

′) + δs′skε(x, x
′)
)

(8.5)

where kε(x, x
′) is the kernel of the difference function between the target and the

objective function for a particular seed and must also must satisfy kε(x, x) = σ2
ε (x).

We return to design of kε(x, x
′) shortly. µ0(x, s) = µ̄ is the constant prior mean.

Given a tuple of input pairs X̃n = ((x, s)1, ..., (x, s)n), the generative distribution of

Y n is thus

Y n ∼ N
(
µ̄, kθ̄(X

n, Xn) + 1Sn ◦ kε(Xn, Xn)
)

(8.6)

where ◦ denotes matrix element-wise (Hadamard) product and 1Sn ∈ [0, 1]n×n is a

binary masking matrix with elements equal to one at i, j when si = sj . Hence for the

noise matrix, 1Sn ◦ kε(Xn, Xn), the diagonal and also any off-diagonal pairs where

si = sj are non-zero with corresponding covariance kε(x
i, xj). The model encodes

the functional form of the objective as target and difference functions, εs(x),

θ(x, s) = θ̄(x) + εs(x) (8.7)

where the εs(x) are independent and identically distributed GP realizations

ε1(x), ε2(x), ... ∼ GP
(

0, kε(x, x
′)
)
. (8.8)

This model structure has multiple desirable properties. Firstly, by design it mirrors

the standard model assumed for non-CRN use cases, y = θ̄(x) + ε, where it is

commonly assumed that all ε are independent Gaussian variable realizations. With

CRN, the “noise” terms εs(x) are independent Gaussian process realizations. Secondly,

kε(x, x
′) dictates the covariance in differences from the target at x and x′ induced by

CRN that may be chosen by the user for a given application, we discuss our model

next. Thirdly, kε(x, x
′) is typically a parametric function whose hyperparameters are

learnt from multiple realizations, ε1(x), ε2(x), ..., of a single GP and each seed may

be viewed as a task in a multi-task model. This differs slightly from other multi-task

models commonly used for multi-fidelity optimization, [Poloczek et al., 2017, Swersky

120



et al., 2013], or for multi-objective optimization, [Picheny, 2015], where one task is

not necessarily the same as others and a unique GP model for each task may be

more suitable. However, because all εs(x) come from a single common GP, the kernel

kε(x, x
′) must have the flexibility to model how the objective for any seed may differ

from the target. We assume a decomposition of the difference functions, εs(x), into

three parts: a constant offset os, a bias function bs(·), and white noise ws(·):

θ(x, s) = θ̄(x) + εs(x) = θ̄(x) + os + bs(x) + ws(x). (8.9)

Firstly, to capture the notion that some seeds may result in scenarios that are “easy”

and others “hard” for all solutions x, εs(x) may contain a global offset modeled by

the constant kernel,

os(x) ∼ GP(0, k(x, x′) = η2), (8.10)

where the sample function is constant for all x and hence denoted by os ∼ N(0, η2).

Secondly, to capture the notion that similar solutions should have similar outputs

given the same seed, we include a “bias” function modelled with another Matérn or

squared exponential kernel,

bs(x) ∼ GP
(
0, k(x, x′) = kb(x, x

′)
)
. (8.11)

Thirdly, to capture any other effects not modelled by os and bs(x), such as discon-

tinuities, we follow Chen et al. [2012] and Xie et al. [2016] and include a realization

of white noise

ws(x) ∼ GP
(
0, k(x, x′) = δx′xσ

2
w

)
. (8.12)

Therefore, this functional form of θ(x, s) is a realization of the Gaussian process

θ(x, s) ∼ GP
(
µ̄, kθ̄(x, x

′) + δss′(η
2 + kb(x, x

′) + σ2
wδxx′)

)
(8.13)

= GP
(
µ̄, k(x, s, x′, s′)

)
. (8.14)

See Figure 8.1 for example realizations. Although this is a general model, to simplify

parameter learning in practice we assume parameter sharing between kθ̄(x, x
′) and

121



●

●

0 20 40 60 80 100

−
2

−
1

0
1

2
3

General Model

X

Y

● ●

●

● ●

● ●
●

●

●

●

●

●
●

●

●

● ● ●

● ● ● ●
●

●● ●

●

● ●

● ●
●

●

●

●

●

●
●

●

●

● ● ●

● ● ● ●
●

●

● ●
● ●

●

●
● ●

●

●
● ●

● ●

●

●

●
● ●

●
●

●
●

●

●

● ●
● ●

●

●
● ●

●

●
● ●

● ●

●

●

●
● ●

●
●

●
●

●

●

● ●Target s=1 s=2

●

●

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2
3

Biases Only

X

Y

●

●

●
●

● ● ●

●
● ●

●
● ●

●

●

●

● ●

●

●
● ● ● ●

●

●

●

●
●

● ● ●

●
● ●

●
● ●

●

●

●

● ●

●

●
● ● ● ●

●

●
● ●

●

●

●
● ● ● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●
● ● ● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

0 20 40 60 80 100

−
2

−
1

0
1

2
3

Offsets Only

X

Y

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

● ● ● ●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

● ● ● ●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

● ● ● ●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

● ● ● ●
●

●

●

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2
3

Offsets and White Noise, Dense X

X

Y ●●●
●
●
●●●
●

●
●●●
●

●
●
●●●

●
●●

●

●
●●
●
●●

●

●

●

●

●
●
●●●●
●
●●

●●
●

●
●

●

●●
●
●●
●
●●

●

●●●●
●
●●
●●
●
●
●
●
●●
●●●
●

●●●

●
●

●
●

●●

●

●●

●
●

●●●
●
●●●●●●●●
●
●
●●
●
●
●●
●
●

●●●
●

●●●

●●

●●

●●●●
●

●

●
●●●●●●
●
●
●
●
●
●●
●
●
●
●
●●
●●

●

●
●
●●●
●

●●
●●

●●

●
●●●●

●●
●
●

●

●
●

●
●
●●
●
●
●

●

●●
●●

●
●
●
●
●
●
●●●
●
●
●
●●●
●●●
●●

●●
●
●

●

●
●

●

●●●●
●

●
●●
●
●
●
●
●
●
●
●
●

●
●●●●●
●
●●
●●●●
●
●
●●

●●

●

●

●

●●●
●
●●

●

●●●●
●

●

●
●●
●
●●●

●

●
●●
●

●

●
●
●
●●●
●

●●●●●●
●●●●
●●
●
●

●●
●

●●
●
●
●

●
●●
●●●
●●

●

●
●●●
●●
●
●●
●
●
●●
●
●●
●
●
●●●●
●
●●●
●
●
●

●●

●

●
●

●

●●
●●●●●
●

●
●●●●●●
●●●
●
●

●

●
●

●●
●
●

●

●●●●●

●
●

●
●
●
●

●
●●●
●

●
●
●
●
●
●

●
●●

●

●
●●
●●

●
●
●●
●

●

●

●
●●
●

●

●
●●

●
●●●
●
●
●●
●

●●

●

●

●

●
●●
●
●●

●●
●
●

●

●
●●
●
●●

●

●

●●
●

●

●●
●●●●●●●●●

●●●
●

●●●
●

●●●

●
●
●

●●
●●●
●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●

●●

●●●●

●

●●
●
●
●
●●
●
●
●
●●
●

●
●

●

●●
●
●
●
●

●

●●
●
●

●

●
●

●
●●

●
●
●●
●●●
●

●●
●●●●
●●●
●●

●

●

●
●
●
●●

●
●
●●
●

●

●

●

●●●●●●●●●

●

●
●●
●●

●

●●
●
●●

●

●

●

●●

●●●●
●

●●
●●
●●

●

●

●
●

●

●

●

●

●●●●

●●
●●
●●

●
●●

●

●●●
●

●●

●

●
●●●
●
●●●

●●●

●

●

●
●
●
●●●
●●
●

●●

●
●
●

●

●●●
●
●

●●
●
●●
●

●●
●●

●

●
●

●●●

●●

●●
●

●

●●●
●
●

●
●●
●
●●
●
●●●
●

●

●

●

●●●

●
●
●
●

●

●
●

●●

●

●●
●
●●

●

●

●●●
●

●
●
●

●
●●
●

●●●

●

●●
●●
●

●
●●●
●●
●
●
●

●
●

●
●
●●
●
●●●

●
●●
●●●
●

●●
●●●●●

●

●●
●●

●●●●●●
●

●

●●
●

●
●

●●

●
●

●

●
●
●

●
●●

●
●●●●
●
●
●

●

●●●

●

●
●

●

●
●
●
●●●●●●●●
●
●

●●●
●●

●

●
●

●

●
●●●●
●

●
●
●

●
●●
●●●
●

●
●
●
●●

●
●●●●
●

●

●
●
●●
●
●
●●
●
●
●●●
●●
●

●

●

●●
●

●

●●
●
●

●
●
●

●

●●●
●

●
●
●
●

●

●

●●●●
●●
●●
●●●●●

●●●●

●●
●

●●●

●
●●●
●

●

●

●

●
●●●

●

●
●

●●●
●
●
●
●

●
●
●

●●●●
●●
●
●●●
●
●●●●●

●

●

●

●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Figure 8.1: Samples from the generative model. In all plots, lines show θ̄(x) and
θ̄(x) + os + bs(x) (no white noise), points show θ(x, s) (including white noise). Left
plots: an algorithm must evaluate multiple seeds to find optimum. Right plots: an
algorithm can optimize one seed to find arg max θ̄(x).

kb(x, x
′) such that a CRN model has only two more hyperparameters than its

corresponding non-CRN model. We discuss in more detail in Section 8.4.2. For the

rest of this section, we assume that all kernels are known functions and the unknown

θ(x, s) are to be inferred.

8.3.2 Inferring the Objective θ(x, s)

We denote an observation at time n as (xn, sn, yn), the sequence of observed solutions

as (x1, ..., xn) = Xn, the sequence of observed seed values as Sn and the sequence

of input pairs, x̃i = (xi, si), as (x̃1, , ..., x̃n) = X̃n. The vector of observed outputs

is denoted (y1, ..., yn) = Y n. And, abusing notation, we also treat these as sets

e.g. x̃ ∈ X̃n, and use both (x, s) and x̃ interchangeably to represent an input pair.

The dataset of observed inputs and outputs we denote Dn = ((x̃1, y1), ..., (x̃n, yn)).

Inferring the underlying realization of θ(x, s) can be done analytically using the

122



Bayesian update equations for multivariate Gaussian random variables,

θ(x, s)|Dn ∼ GP
(
µn(x, s), kn(x, s, x′s′)

)
(8.15)

µn(x, s) = µ0(x, s)− k0(x, s, X̃n)K−1(Y n − µ0(X̃n)) (8.16)

kn(x, s, x′, s′) = k0(x, s, x′, s′)− k0(x, s, X̃n)K−1k0(X̃n, x′, s′) (8.17)

where k0(x, s, x′s′) is any positive semi-definite kernel over X × N+. The matrix

K = k0(X̃n, X̃n) is the generative covariance for Y n. Note that there is no added

identity matrix as in Equation 8.4 thus the model assumes deterministic outputs

for any given input pair (x, s). Intuitively, the white noise kernel is the squared

exponential kernel with an infinitely short length scale and observations at one

location do not inform predictions at any other location. The posterior mean

predicts a sum of GP realizations µn(x, s) = En
[
θ̄(x) + os + bs(x) + ws(x)

]
. At

observed input pairs, (xi, si) ∈ X̃n, the predicted white noise realization is informed

by data and En[wsi(x
i)] 6= 0 (almost surely), while at unobserved input pairs

En[ws(x)] = 0, returning the prior of the white noise GP. As a result, the posterior

mean discontinuously interpolates the data as shown in Figure 8.2.

8.3.3 Inferring the Target θ̄(x)

The aim of the optimization is to maximize θ̄(x) over solution space X however

the model of θ(x, s) and collected data is over the acquisition space X × N+. The

expectation of the objective is also the average over infinite seeds and therefore the

model of θ(x, s) induces another GP over the target θ̄(x) as follows.

Proposition 8.3.0.1 For any given kernel over the domain X × N+ that is of the

form kθ̄(x, x
′)+δss′kε(x, x

′), and a dataset of n input-output triplets Dn, the posterior

over the target is a Gaussian process given by

θ̄(x)|Dn ∼ GP(µnθ̄ (x), knθ̄ (x, x′)) (8.18)

µnθ̄ (x) = µn(x, s′) (8.19)

knθ̄ (x, x′) = kn(x, s′, x′, s′′) (8.20)

123



where s′, s′′ ∈ N+ \ Sn with s′ 6= s′′ any two unobserved unequal seeds.

The intermediate steps and proof are given in Appendix B.0.1. For the sake of a

simple notation, we assume that seeds are labeled by positive integers, and let s′ = 0

and s′′ = −1. Then µn(x, 0) is the posterior expectation of the target θ̄(x).

8.4 Knowledge Gradient for Common Random Num-

bers

8.4.1 Acquisition Function

Evaluations of θ : X × N+ → R are collected in order to optimize θ̄ : X → R. Given

a model of both functions, the acquisition function quantifies the value of a new

hypothetical observation at (x, s). This is then optimized to obtain the best (x, s)n+1

and the objective is evaluated yn+1 = θ(xn+1, sn+1). The surrogate model is defined

over the space of non-negative seeds X × {0, 1, ...}, the target of optimization is over

the space X × {0} and the acquisition is over the space X × {1, 2, ..}. Therefore

we require a ‘correlation aware’ acquisition function that computes the value of

a sample at (x, s)n+1 for sn+1 > 0 by measuring changes in the model at other

locations (x′, 0) 6= (x, s)n+1. This requirement excludes certain acquisition functions

in their unmodified form such as Expected Improvement [Jones et al., 1998b], Upper

Confidence Bound [Srinivas et al., 2009] and Thompson sampling [Kandasamy et al.,

2018]. Two popular families of acquisition functions that naturally account for how

the whole surrogate model changes include Entropy Search [Villemonteix et al., 2009b],

and Correlated Knowledge Gradient [Scott et al., 2011b]. Entropy Search measures

mutual information between the distribution of the next output, P[yn+1|Dn, xn+1],

and the induced distribution of the location of the maximizer P[x∗|Dn]. Correlated

Knowledge Gradient measures the expected incremental increase in the predicted

outcome for the user, peak posterior mean E[maxx µ
n+1(x)−maxx µ

n(x)|Dn, xn+1].

In this work we adopt the Knowledge Gradient for it’s principled Value of Information

derivation and provable guarantees.

In the use case we consider, the value of information is the expected increase

124



in the predicted peak of the target, maxµn+1(x, 0)−maxµn(x, 0), caused by a new

sample (x, s)n+1. For the rest of this work, we use the shorthand En[·] = E[·|Dn].

The Knowledge Gradient for Common Random Numbers is given by

KGCRN
n (x, s) = En

[
max
x′∈X

µn+1(x′, 0)− max
x′′∈X

µn(x′′, 0)

∣∣∣∣(x, s)n+1 = (x, s)

]
= En

[
max
x′∈X

µn(x′, 0) + σ̃n(x′, 0;x, s)Z − max
x′′∈X

µn(x′′, 0)

]
(8.21)

where, conditioned on Dn, the expectation is only over Z ∼ N(0, 1) and

σ̃n(x, 0; (x, s)n+1) =
kn(x, 0, (x, s)n+1)√
kn((x, s)n+1, (x, s)n+1)

.

A full derivation can be found in multiple previous works [Frazier et al., 2009b, Pearce

and Branke, 2017a]. The next input to the objective, (x, s)n+1, is determined by

optimizing the above acquisition function (x, s)n+1 = arg maxx,s KGCRN
n (x, s). Evalu-

ation of KGCRN is the expectation of a maximization and can be evaluated analytically

when X is a finite set, however in general approximations are required which are

discussed in Section 8.4.2 and we discuss numerically finding arg maxx,s KGCRN
n (x, s)

in Section 8.4.2.

The acquisition space is X×N+ contains an infinite number of seeds. However

as a result of the assumed form of the GP, the posterior mean and correlation are

identical for all unobserved seeds s ∈ N+ \ Sn. Thus, µn(s, 0) can be used as the

target estimate and also the value under the acquisition criterion is identical for all

new seeds, KGCRN
n (x, s) = KGCRN

n (x, s′) for all s, s′ ∈ N+ \ Sn. Thus, it suffices to

evaluate the acquisition criterion on all observed seeds s ∈ Sn and only a single new

seed s = max{Sn}+ 1. Over multiple iterations, new seeds may be evaluated and

added to the set of observed seeds and the acquisition space grows accordingly by

always including one new seed. Note that that the acquisition criterion is maximized

jointly over the old and new seeds. In particular, no heuristics or user input is used

to make the exploration-exploitation trade-off over old and new seeds.

A connection can be drawn between our algorithm and recent work on multi-

information source optimization [Poloczek et al., 2017, Swersky et al., 2013]. At a

125



●

●

0 20 40 60 80 100

−
1

0
1

2

GP Model, n=4

X

Y

truth
s=0
s=1
s=2●

●

●

●

●

●

0 20 40 60 80 100

0.
00

0.
10

0.
20

KGCRN, n=4

X

K
G

C
R

N
(x

,s
)

max  
s=1
s=2
s=3

●

●

0 20 40 60 80 100

−
1

0
1

2

GP Model, n=8

X

Y

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0.
00

0.
10

0.
20

KGCRN, n=8

X

K
G

C
R

N
(x

,s
)

Figure 8.2: (TL, TR) The GP model with offsets, bias functions and white noise.
The model discontinuously interpolates the white noise. (BL, BR) KGCRN after 4
initial points on seeds s = 1, 2 (L) and an added 4 sequential points by KGCRN (R).
All new points were allocated to seeds s = 1, 2 and the next point will be allocated
to s = 1.

given iteration, each seed in the acquisition space may be viewed as an information

source and s = 0 is the target, and a user must choose a solution x and an information

source s in order to optimize a target s = 0. However in the CRN case, the target

itself cannot be observed, all tasks have equal budget consumption, and the number

of available sources is infinite.

8.4.2 Implementation Practicalities

In Section 8.3 we assumed that kθ̄(x, x
′) and kε(x, x

′) are known. Note that in

practice their hyperparmeters are estimated from data. Also in Section 8.4 we

assume KGCRN
n (x, s) can be evaluated and maximized however there is computational

cost. In practice, we desire a CRN method that does not introduce an unrealistic

computational requirement when compared to an equivalent non-CRN method and

in this method we discuss such solutions.

126



Gaussian Process Hyperparameters.

In this work we assume that the target is modeled with the popular squared expo-

nential (SE) kernel

kθ̄(x, x
′) = σ2

θ̄ exp(−(x− x′)ᵀL(x− x′)/2)

where L = diag(1/l21, ..., 1/l
2
d) is a diagonal matrix of inverse length scales. We also

assume that the bias functions come from a squared exponential kernel kb(x, x
′) =

σ2
b exp(−(x− x′)ᵀL(x− x′)/2) that shares the diagonal matrix L. For any kθ̄(x, x

′),

one may simply use kb(x, x
′) ∝ kθ̄(x, x′) where the ratio is a hyperparameter. The

constant kernel and white noise kernel each have a single parameter η2 and σ2
w.

The CRN model has parameters L, σθ̄, η
2, σ2

b , σ
2
w, two more than a non-CRN model.

All parameters are learnt by maximizing the marginal likelihood by first learning

a non-CRN model (i.e. clamping η2 = σ2
b = 0). However, the added computation

for the CRN model comes from fine tuning the hyperparameters of the difference

kernel, η2, σ2
b , keeping total noise constant to the learnt noise of the non-CRN model

η2 + σ2
b + σ2

w = σ2
w,non-CRN. We then perform further fine tuning of all parameters

simultaneously. For details, see the Appendix B.2. In future work, especially with

more complex models, we will study a Bayesian treatment of the hyperparameters:

such an approach that can improve algorithm performance especially for very small

budgets when hyperparameters are most uncertain.

Evaluation of KGCRN
n (x, s).

The acquisition function, Equation 8.21, is composed of an expectation over Z of

maximizations over X. This may be evaluated analytically when X is a feasibly

small finite set using Algorithm 1 from Frazier et al. [2009b]. Alternatively, when

X is a continuous set, one may replace the expectation over the infinite Z with a

Monte-Carlo average. For each Z sample, the inner maximization is performed over

X numerically, yielding a stochastic unbiased estimate of KGCRN
n (x, s) [Wu et al.,

2017].

In this work, we follow Poloczek et al. [2017] and Xie et al. [2016] that use

127



a deterministic approximation. This allows us to reliably test a conjecture and

allows direct comparison with prior work both described in Section 8.5.2. The inner

maximization over X may be replaced with a smaller random subset A that is frozen

between iterations thus approximating KGCRN with

KGCRN
n (x, s;A) = En

[
max

x′∈A∪{x}
µn(x′, 0) + σ̃n(x′, 0;x, s)Z − max

x′′∈A∪{x}
µ(x′′, 0)

]
.(8.22)

The random subset is union of a latin hypercube over X with n points, AnLHC , and

random perturbations of previously sampled points AnP = {xi + γ|xi ∈ Xn} where

γ ∼ N(0, I) is Gaussian noise scaled for the application at hand. Finally, we let

An = AnLHC ∪AnP .

Optimization over the Acquisition Space.

In general, KG is a multi-modal differentiable acquisition function over X and

typically maximized by applying random search followed by using the best points

for multi-start gradient ascent. For KGCRN
n (x, s), the acquisition space is X̃n

acq =

X×{1, ...,maxSn+1}, suggesting KGCRN
n (x, s) needs to be independently optimized

over X for each s. However, recall the fundamental CRN modelling assumption

that all seeds have the same latent θ̄(x) or “backbone”. As a result, KGCRN
n (x, s)

for each seed typically has peaks and troughs in similar locations, see Figure 8.2.

Therefore, to maximize KGCRN
n (x, s), we use the same initial random search budget

however distributed over X̃n
acq and the best points are used for gradient ascent over

X with the corresponding seed fixed. The added computation unique to CRN is as

follows, the best (x, s) is evaluated for all s and finally x is fine-tuned with the best s

fixed. Consequently, the cost of acquisition optimization for CRN is only marginally

greater than for non-CRN.

When the solution space X is discrete, such as integers, one may simply per-

form all operations in continuous space and round any x values to their corresponding

nearest neighbors in X when necessary, xnr , x
n+1, An.

128



Algorithm 3 The KGCRN Algorithm.

Require: θ(x, s), X, ninit, N , kθ̄(x, x
′), algorithm to evaluate E[{maxx′ a(x′) +

b(x′, x)Z}] and ∇xE[{maxx′ a(x′) + b(x′, x)Z}], Optimizer() over X × N+

X̃ninit ← ninit sampled points by LHC over X × {1, 2, 3, 4, 5}
Y ninit ← θ(X̃ninit)

for n = ninit to N − 1 do

µn(x, s), kn(x, s, x′, s′)← GP(θ(x, s)|X̃n, Y n, L, σ2
b , η

2, σ2
b , σ

2
w)

KGCRN
n (x, s)← E[{maxx′ µ

n(x′, 0) + σ̃n(x′, 0, x, s)Z}]−maxx′′ µ
n(x′′, 0)

(x, s)n+1 ←Optimizer(KGCRN
n (x, s))

yn+1 ← θ(xn+1, sn+1)
X̃n+1, Y n+1 ← (X̃n, (x, s)n+1), (Y n, yn+1)

end for

µN (x, s)← GP(θ(x, s)|X̃N , Y N , L, σ2
b , η

2, σ2
b , σ

2
w)

return xNr = argmax
x

µN (x, 0)

8.4.3 Algorithm Properties

The value of the information by sampling decision x with seed s is the expected

gain in the quality of the best decision that can be selected given all the available

information. In this regard, the KGCRN is myopically optimal by construction. The

following observation is trivial yet worth highlighting: standard Knowledge Gradient

(KG) is reproduced by artificially constraining KGCRN to only acquire data for a

new seed in each iteration. Thus, we have

max
x,s∈N+

KGCRN
n (x, s) ≥ max

x,s∈N+\Sn
KGCRN

n (x, s) = max
x

KG(x) (8.23)

thus sampling without any CRN may be viewed as a lower bound on the information

gain achievable by KGCRN.

Given an infinite budget, it is a desirable property for any algorithm to be

able to discover the true optimum xOPT = argmax
x∈X

θ̄(x) (assuming the optimizer is

129



unique). Here we give an additive bound on the loss when applying KGCRN to a

finite subset, A, of continuous space X. Let kθ̄(x, x
′) be a Matérn class kernel, and

d = maxx′∈X minx∈A dist(x, x′) the largest distance from any point in the continuous

domain X to its nearest neighbor in A.

Theorem 8.4.1 Let xNr ∈ A be the point that KGCRN recommends in iteration N .

For each p ∈ [0, 1), there is a constant Kp such that with probability p

lim
N→∞

θ̄(xrN ) > θ̄(xOPT )−Kpd

Proof is given in Appendix B.0.2. Note that this establishes consistency for the finite

case as A = X and d = 0. Note that this bound is conservative as A is randomized

at each iteration to avoid “overfitting”.

8.5 Comparison with Previous Work

8.5.1 Compound Sphericity

We show how to recover the generative model considered by Xie et al. [2016] and

Chen et al. [2012] as a special case of our proposed model. If there are no bias

functions, kb(x, x
′) = 0, the differences kernel reduces to kε(x, x

′) = η2 + σ2
wδxx′ and

each difference function εs(x) is an offset and white noise. Thus, the differences

matrix kε(X
n, Xn) is η2 + σ2

w on the diagonal and constant η2 for all off-diagonal

terms, this matrix composition is referred to as compound sphericity. The correlation

in differences may be written as ρ = η2/(η2 + σ2
w). Let ∆n = Y n − µ0(X̃n) and

1s = 1s∈Sn ∈ {0, 1}n be a binary masking vector. 1x is defined analogously. Then

the posterior mean has the following simple form:

µn(x, s) = µ0(x)− (kθ̄(x,X
n) + η21s + σ2

w1s1x)K−1∆n

= kθ̄(x,X
n)K−1∆n︸ ︷︷ ︸

µn(x,0)

+ η21sK
−1∆n︸ ︷︷ ︸

independent of x

+ σ2
w1s1xK

−1∆n︸ ︷︷ ︸
=0 except for (xi,si)∈X̃n

= µn(x, 0) + As + Bs1(x,s)∈X̃n (8.24)

130



and the posterior mean function for a given seed, s > 0, differs from the target,

s = 0, by two additive terms. The first is a constant As and the second is non-zero

for singletons (x, s) ∈ X̃n. This leads to the following two Lemmas, both cases

correspond to the second additive term equating to zero. Firstly, if there is no white

noise (σ2
w = 0) then for all seeds εs(x) = os is only a constant offset and a user may

simply optimize a single seed to learn arg max θ̄(x). This corresponds to compound

sphericity with full correlation, ρ = 1, and may be viewed as a “best case” scenario

for CRN.

Lemma 8.5.1 Let the function θ(x, s) be a realization of a Gaussian process with

compound sphericity with full correlation, ρ = 1. Then for all s ∈ N+, the posterior

mean functions have the same optimizer as the target estimate

arg max
x∈X

En[θ̄(x)] = arg max
x∈X

µn(x, s′) ∀s′ ∈ N+.

Proof By setting σ2
w = Bs = 0 in Equation 8.24, the posterior means for all seeds

differ by only an additive constant, As, therefore the maximizer of any two seeds is

the same and by Proposition 8.3.0.1 the same maximizer as the estimate of En[θ̄(x)].

�

Secondly, when there is white noise and the set of solutions X is large and

dense, a user may simply optimize a single seed to learn arg max θ̄(x) as above.

Lemma 8.5.2 Let the function θ(x, s) be a realization of a Gaussian process with

compound sphericity over a continuous set of solutions X, then for all s ∈ N+,

the posterior mean functions have the same optimizer excluding past observation

singletons X̃n

arg max
x∈X\Xn

En[θ̄(x)] = arg max
x∈X\Xn

µn(x, s′) ∀s′ ∈ N+.

Proof By excluding singletons x ∈ Xn, the second additive term in Equation 8.24

vanishes (Bs1(x,s)∈X̃n = 0). The posterior means for all seeds differ by only an

additive constant, As, therefore the maximizer of any two seeds is the same and by

131



Proposition 8.3.0.1 the same as En[θ̄(x)]. �

The right column of Figure 8.1 illustrates example functions for these cases

and top row of Figure 8.2 shows how the posterior mean is discontinuous at evaluated

points. If there are no bias functions and discontinuities are excluded, the posterior

mean is has the same shape for all seeds. Consequently, for a function that is a

realization of a GP with the compound spheric noise model, if there is high correlation

or a large and dense number of solutions X, allocating samples to a single seed can

be much more efficient than allocating to multiple seeds. This result agrees with

those found by Chen et al. [2012]: in the case ρ = 1 with data collected on seed

s = 1, the intercept of the function θ̄(x) is less accurately known while derivatives

∇xθ̄(x) are more accurately known. This is because in the ρ = 1 case, the generative

modelling assumption imposes the functional form as θ(x, s) = θ̄(x) + os implying

∇xθ(x, s) = ∇xθ̄(x).

It is due to the presence of the bias functions, bs(x), that the optimizer of

one seed, arg maxx θ(x, s), is not an accurate estimate of the optimizer of the target

function, arg maxxθ̄(x), and an optimization algorithm must evaluate multiple seeds.

Next, in Lemma 8.5.3 we show that if all solutions of a finite set X have been

evaluated there is nothing left to gain according to KGCRN.

Lemma 8.5.3 Let θ(x, s) be a realization of a Gaussian process with the com-

pound spheric kernel and ρ = 1. Let X = {x1, ..., xd} and evaluated points

X̃n = {(x1, 1), ..., (xd, 1)}, then for all (x, s) ∈ X × N+, there is no more value

of any measurement

KGCRN
n (x, s) = 0 (8.25)

and the maximizer of θ̄(x) is known.

Proof is given in the Appendix B.0.3.

Next, KGCRN may be evaluated according to the method proposed by Scott

et al. [2011b] that we used in Chapter 7.3.2. Recall the method discretizes the

inner maximization over X with past evaluated points, Xn, and the new proposed

point so that the integral over Z is analytically tractable. This may be viewed as a

132



noise-generalized EI because it reduces to Expected Improvement (EI) [Jones et al.,

1998b] when outputs are deterministic. By augmenting this KG evaluation method

with the ability to choose the seed, in the full correlation case it is guaranteed to never

evaluate a new seed and the KGCRN
n (x, s) function again simplifies to EI. Therefore

the KGCRN algorithm naturally reduces to the EGO algorithm for deterministic

functions applied to seed s = 1.

Lemma 8.5.4 Let θ(x, s) be a realization of a Gaussian process with the compound

spheric kernel with ρ = 1. Let X ⊂ Rd be the set of possible solutions, X̃n =

{(x1, 1), ..., (xn, 1)} be the set of sampled locations and Xn = (x1, ..., xn). Define

KGCRN
n (x, s;A) = En

[
max

x′∈A∪{x}
µn+1(x′, 0)− max

x′∈A∪{x}
µn(x′, 0)

∣∣∣∣(x, s)n+1 = (x, s)

]
.(8.26)

Then for all x ∈ X

KGCRN
n (x, 1;Xn) > KGCRN

n (x, 2;Xn)

and therefore maxx KGCRN
n (x, 1;Xn) > maxx KGCRN

n (x, 2;Xn) and seed s = 2 will

never be evaluated. Further

KGCRN
n (x, 1;Xn) = E

[
max{0, yn+1 −maxY n}

∣∣Dn, xn+1 = x, sn+1 = 1
]
.

The proof is given in the Appendix B.0.3.

In the more general case, evaluating KGCRN
n (x, s) by any method, when using

compound spheric with either full correlation or in a continuous domain X, we

conjecture that the true myopically optimal behaviour is to never go to a new seed,

max
x∈X,sold∈Sn

KGCRN
n (x, sold) > max

x∈X,snew /∈Sn
KGCRN

n (x, snew)

and a new seed s /∈ Sn will never be sampled. However, the above inequality cannot

be proven because maxx∈X KGCRN(x, s) has no analytic expression and must be

found numerically via gradient ascent algorithms. (Note that KGCRN
n (x, sold) >

KGCRN
n (x, snew) is not true in general, xi ∈ Xn are counter examples.) Therefore

133



we numerically demonstrate this conjecture in Section 5.4.

However, this conjectured behaviour comes with the risk that if the modelling

assumption is incorrect for a given application, the algorithm will try to optimize a

single seed and never find the true optimum of θ̄(x). We observe this phenomenon

in Section 5.4 where compound sphericity on a continuous search space encourages

greedy resampling of only observed seeds. However this does not happen with the

inclusion of bias functions, bias functions allow for more intelligent modelling of

noise structure that can then be exploited more appropriately.

8.5.2 Comparison with Knowledge Gradient with Pairwise Sampling

Extending Bayesian optimization to account for correlation in noise has been con-

sidered by Xie et al. [2016]. The proposed method considers the case when the search

space X is a large finite subset of a continuous search space, enabling the use of GP

regression. For the generative model, the method assumes that θ̄(x) is a realization

of a GP and considers compound spheric covariance for difference functions. For

acquisition, the standard Knowledge Gradient acquisition function quantifies the

value of a single observation without CRN (on a new seed) and this is extended with

a second acquisition function that quantifies the value of a pair of observations with

CRN (on the same new seed), the acquisition space is thus {X,X×X}. The method

switches between the serial mode and the batch mode depending on which mode

promises the larger value per sample. Since the value of a pair cannot be computed

analytically, a lower bound is given by considering the difference between the pair of

outcomes

KGPW
n (xi, xj) =

1

2

(
En
[

max
x′∈X

µn(x′, 0) + ˜̃σn(x′, 0;xi, xj)Z − max
x′′∈X

µn(x′′, 0)

])
˜̃σn(x, 0;xi, xj) =

kn(x, 0, xi, s
′)− kn(x, 0, xj , s

′)√
kn(xi, s′, xi, s′) + kn(xj , s′, xj , s′)− 2kn(xi, s′, xj , s′)

where s′ = sn+1 = n+1 is a new seed and KGPW
n (x, x′) is optimized over X×X. Note

we have adapted the notation from the original work (where the seed is not an explicit

argument) to the formulation presented in this work. In the original work, numerical

evaluation of KGPW is performed by discretizing the inner maximization, as discussed

134



in Section 8.4.2. One call to KGPW requires evaluating both kn(x, 0, xi, s
n+1) and

kn(x, 0, xj , s
n+1) for each x and is thus marginally more expensive than one call to

KG or KGCRN.

In the large |X| setting, it is efficient to use GP regression, with compound

sphericity in the high ρ setting it is efficient to use CRN. Within both of these

regimes, it is doubly beneficial to resample old seeds as implied by both Lemmas 8.5.1

and 8.5.2. Therefore, the Knowledge Gradient with Pairwise Sampling combines

an acquisition procedure that can only sample new seeds with a differences model

for which it is efficient to only sample old seeds. Also, from a value of information

perspective, both serial and batch modes of KGPW are guaranteed to yield equal or

lower expected value than sequential allocation by KGCRN.

Proposition 8.5.4.1 Let Dn be a dataset of observation triplets. For a Gaussian

process with a kernel of the form kθ̄(x, x
′) + δss′kε(x, x

′), the expected increase in

value after two steps allocated according to KGCRN is at least as big as two steps

allocated according to KGPW,

En
[
max
x′

µn+2(x′, 0)−max
x′′

µn(x′′, 0)
∣∣(x, s)n+1, (x, s)n+2 ∼ KGCRN

]
≥ En

[
max
x′

µn+2(x′, 0)−max
x′′

µn(x′′, 0)
∣∣(x, s)n+1, (x, s)n+2 ∼ KGPW

]

Proof The suboptimality of one or two steps of the serial mode of KGPW is clear

by noting it is constrained to a new seed, a subset of the same acquisition space

considered by KGCRN as mentioned in Equation 8.23. We focus on the suboptimality

135



of one step of the batch mode

En
[
max
x′

µn+2(x′, 0)−max
x′′

µn(x′′, 0)
∣∣(x, s)n+1, (x, s)n+2 ∼ KGCRN

]
= max

(x,s)n+1
En
[

max
(x,s)n+2

En+1

[
max
x′

µn+2(x′, 0)
∣∣(x, s)n+2

]
−max

x′′
µn(x′′, 0)

∣∣∣∣(x, s)n+1

]
≥ max

xn+1
En
[

max
xn+2

En+1

[
max
x′

µn+2(x′, 0)
∣∣xn+2

]
−max

x′′
µn(x′′, 0)∣∣∣∣xn+1, sn+1 = sn+2 = n+ 1

]
(8.27)

≥ max
xn+1,xn+2

En
[

max
x′

µn+2(x′, 0)−max
x′′

µn(x′′, 0)∣∣∣∣xn+1, xn+2, sn+1 = sn+2 = n+ 1

]
(8.28)

≥ En
[

max
x′

µn+2(x′, 0)−max
x′′

µn(x′′, 0)∣∣∣∣(xn+1, xn+2) = arg max KGPW
n (x, x′), sn+1, sn+2 = n+ 1

]
= En

[
max
x′

µn+2(x′, 0)−max
x′′

µn(x′′, 0)

∣∣∣∣(x, s)n+1, (x, s)n+2 ∼ KGPW

]

where the first inequality is sub-optimality due to constraining the acquisition space

to a new seed, the second is by Jensen’s inequality and the convexity of the max

operator implying sub-optimality due to batch pre-allocation, and the third inequality

is due to the approximation with differences used in KGPW that introduces sub

optimally by not allocating to truly maximize the batch. �

Sequentially allocating two singles to the same new seed is guaranteed to have

higher value per sample than a corresponding batch mode pre-allocating a pair to a

single seed as shown by Equations 8.27 and 8.28. However in the KGPW algorithm,

the serial mode is constrained to allocate to unique seeds whereas the batch mode is

constrained to allocate to same seeds. Each mode computes the value over a different

subset of the full acquisition space and therefore occasionally the batch mode can

return higher value per sample.

Instead, we make explicit the domain for the objective function as both

a decision variable x and a seed s and build a surrogate model and acquisition

136



procedure over the same space. This approach has many advantages. Firstly there is

no need to consider batches/pairs, drastically reducing the space for the acquisition

from X ×X, also reducing the cost per call to the acquisition function, whilst being

provably more efficient. Secondly the structure in the noise, difference functions, can

be more aggressively exploited by allocating budget to only a few seeds or allocating

to new seeds as necessary. Thirdly, note that the framework allows a user to replace

Knowledge Gradient with any multi-fidelity/multi-information source [Huang et al.,

2006b, Poloczek et al., 2017] or ‘correlation aware’ serial acquisition procedure and a

corresponding parallel batch acquisition function (or an analytic lower bound) is not

required.

On the other hand, when enabling resampling of old seeds, assuming compound

sphericity incentivises sampling of old seeds. The KGCRN includes bias functions

enabling accurate modelling and the appropriate trade-off between old and new seeds.

The KGPW does not encounter such pitfalls as it does not sample old seeds.

8.6 Numerical Experiments

We perform three sets of experiments, first using synthetic GP sample functions

and known hyperparameters, allowing perfect comparison of just the acquisition

procedures. The next two problems are taken from the SimOpt library (http:

//simopt.org), the Assemble-to-order problem (ATO) and the Ambulances in a

Square problem (AIS). The code for all experiments will be made public upon

publication.

8.6.1 Compared Algorithms and Variants

We aim to investigate the empirical effects of including bias functions and the ability

of the acquisition procedure to revisit old seeds whilst holding all other experimental

factors constant. Therefore we consider the following five algorithms.

• Knowledge Gradient (KG): A GP model with independent homoskedastic

noise is fitted, η2 = σ2
b = 0, σ2

w > 0. Acquisition is according to KGCRN

artificially constrained to a new seed.

137

http://simopt.org
http://simopt.org


• KG with Pairwise (KGPW): The algorithm proposed by Xie et al. [2016].

A GP with the compound spheric differences kernel is fitted σ2
b = 0, η2, σ2

w ≥ 0.

For acquisition, the value of single sample is given by KGCRN and pairs by

KGPW, both are constrained to a new seed.

• KG with Pairwise and Bias Functions (KGPW-bias): A GP with both

offsets and bias functions is fitted, σ2
b , η

2, σ2
w ≥ 0. Acquisition is the same as

above.

• KG for Common Random Numbers without Bias Functions (KGCRN-

CS): A GP with σ2
b = 0 and η2, σ2

w ≥ 0 is fitted. Acquisition can sample any

seed according to KGCRN.

• KG for Common Random Numbers (KGCRN): A GP with both offsets

and bias functions is fitted, σ2
b , η

2, σ2
w ≥ 0. Acquisition can sample any seed

according to KGCRN.

8.6.2 Synthetic Data, no Bias Functions

We set X = {1, .., 100} and generate synthetic data from a Multivariate Gaussian

θ̄(X) ∼ N(0, kθ̄(X,X)) where kθ̄(x, x
′) = 1002 exp

(
− (x−x′)2

2·52

)
. The offsets are

sampled os ∼ N(0, ρ502) and the white noise ws(x) ∼ N(0, (1 − ρ)502). We vary

ρ ∈ {0, 0.1, ..., 0.9, 1.0} holding the total noise constant such that standard KG

will always perform the same. For algorithms we compare normal KG, KGPW and

KGCRN all without bias functions. For each method we evaluate the KG by Equation

8.22 and set A = X. We optimize the acquisition function by exhaustive search.

In all cases we fit the GP regression model with known kernel hyperparameters

except for KG where we force ρ = 0. This allows us to fully focus on differences in

the generative model and acquisition function. We measure opportunity cost, let

xnr = arg maxx µ
n(x, 0),

Opportunity Cost at time n = max θ̄(x)− θ̄(xnr ). (8.29)

138



●

●

10 20 30 40 50

0
5

10
15

20
25

30

Opportunity Cost for Full Correlation

N

O
C

KG
KG−PW
KG−CRN

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

● ●
●

●

●
● ● ●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

OC after 50

ρ

O
C

●

●

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
re

qu
en

cy

Seed Reuse Frequency

ρ= 1
ρ= 0

N

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ● ● ● ● ● ● ● ● ●

●
● ●

● ● ●
● ● ● ● ●

● ● ●
● ●

●
● ● ● ●

●

Seed Reuse after 50

ρ

F
re

qu
en

cy

Figure 8.3: TL: Opportunity Cost for the ρ = 1 case, the ρ = 0 case all algorithms
equal KG. KGCRN aggressively optimizes a single seed. TR: final OC for a range of
ρ values. For increasing ρ both CRN methods improve. BL: the average seed reuse
for the cases ρ = 0, 1. For large ρ, KGPW is upper bounded by 0.5, KGCRN never
samples a new seed. BR: final seed reuse over a range of ρ.

We report the frequency of seed reuse, how often at an iteration n the next sampled

seed sn+1 was in the current history of observed seeds Sn. If KGPW samples a pair

for every iteration, the first sample of each pair would be new and the second would

be old hence the average reuse frequency is upper bounded by 0.5.

From top row plots of Figure 8.3, for low ρ values, all algorithms have similar

opportunity cost as there is no exploitable CRN structure. As ρ increases there is

more CRN structure to exploit and KGPW performance improves for larger budgets

while KGCRN performance improves for all budgets.

The bottom row plots of Figure 8.3 show seed reuse which we interpret as

how much an algorithm uses CRN. For all ρ, KGCRN starts by resampling old seeds,

utilizing CRN, and later samples more new seeds only for low ρ, seed reuse dropping

to 0.8, or querying new seeds 20% of the time. We see that this results in significantly

139



faster convergence in the ρ = 1 case plotted.

KGPW instead starts by sampling singles on new seeds, ignoring CRN repro-

ducing KG. For larger budgets KGPW uses more pairs and improves upon KG for

the range of ρ. However for the best case for CRN, ρ = 1, KGPW quickly hits its

seed reuse upper bound of 0.5, querying new seeds 50% of the time, and cannot fully

utilize CRN.

In the Appendix B.1, we present the same experiment using only bias functions,

see B.2, and observe no improvement over standard KG, suggesting that local

differences correlation is not as beneficial as global, i.e. constant, correlation.

8.6.3 Assemble to Order Benchmark

The Assemble to Order (ATO) simulator was introduced by Xu et al. [2010] and a

slightly modified version has been used in Xie et al. [2016] to test the KGPW algorithm.

A shop sells five products assembled from eight items held in inventory. A random

stream of customers arrives into the shop, each buying a product and consuming

inventory. When an item in inventory drops below a user defined threshold, an order

for more is placed. The shop aims to maximize profit (product sales minus storage

cost), by optimizing the reorder thresholds for each item. A seed defines the stream

of customers and the item delivery times. For this problem, the solution space is

X = {1, .., 20}8.

KGCRN
n (x, s) is evaluated and optimized as described in Section 8.4.2. The

expectation of the maximizations in KGPW(xn+1, xn+2) is evaluated exactly the

same way. The location of the single sample is found by using standard KG xn+1 =

argmax
x

KGCRN
n (x, snew). The pair of samples is searched for in two ways. First,

KGPW(xn+1, xn+2) is optimized for xn+2 only with the same multi-start gradient

ascent optimizer. Second, we jointly optimize the pair by searching over the full

X ×X. Finally, the results of both phases are locally fine tuned over X ×X.

All methods start with ninit = 20. All hyperparameters are learnt by max-

imum likelihood and fine tuned after each new sample. We record the quality of the

recommended xnr = argmax
x

µn(x, 0) on a held-out test set of seeds. ATO results are

reported in Figure 8.4.

140



●

●

100 200 300 400 500

80
90

10
0

11
0

12
0

N

Average Profit

P
ro

fit

KG
KG−PW
KG−PW−bias
KG−CRN−CS
KG−CRN

●

●

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N

Seed Reuse

F
re

qu
en

cy

1 2 3 4 5 6

Seed

S
am

pl
es

0
10

0
20

0
30

0
40

0
50

0

KGCRN−CS Seed Allocation

1 2 3 4 5 6

Seed

S
am

pl
es

0
10

0
20

0
30

0
40

0
50

0

KGCRN Seed Allocation

Figure 8.4: Top left: profit of xNr evaluated on a held-out set of 2,000 test seeds.
Top right: average seed reuse over iterations. Bottom: seed allocation for KGCRN

without bias functions (left) and with bias functions (right). Both KGCRN variants
mostly sample a single seed.

141



Both algorithms with KGCRN acquisition yield the largest profits and the

KGPW variants are only marginally improving upon KG. In this application, the

KGCRN variants never use new seeds after the initial five seeds, instead allocating

almost all budget to a single seed suggesting that this ATO problem is an ideal

use case for the compound spheric assumption. From the previous experiment

we observed that KGCRN samples old seeds early and moves onto new seeds for

large budgets. In this learnt hyperparameter case, in the Appendix B.1, the offset

hyperparameter grows over time as model fit improves and data collection focuses on

the peak. Consequently, for larger budgets KGCRN is even more likely to resample

old seeds. With KGPW, the early behavior samples singles on new seeds which

cannot inform any CRN hyperparameters and the algorithm never learns a larger

offset parameter. As a result it allocates very little of the budget to pairs failing to

significantly exploit the CRN structure and hence producing marginally superior

results to KG. In this application, the ability to revisit old seeds clusters observations

on fewer seeds which allows for more robust learning of CRN hyperparameters.

Marginalization of GP hyperparameters, accounting for uncertainty around

the maximum likelihood estimate, may affect performance differences, however

we don’t investigate such an approach in this study. Also a true estimate of the

improvement due to a pair of observations by Monte-Carlo (not the lower bound by

KGPW) would likely increase sampling of pairs.

8.6.4 Ambulances in a Square Problem

This simulator (AIS) was introduced by Pasupathy and Henderson [2006]. Given a

city over a 30km by 30km square, one must optimize the location of three ambulance

bases to reduce the journey time to patients that appear across the city as a Poisson

point process. The seed defines the times and locations of patients. The solution

space is X = [0, 30]6, the valid (x,y) locations for each of three ambulance bases.

We run the simulator for 1800 simulated time units in which on average 30 patients

appear. This problem is over a continuous search space and the optimal result for

each realization of patients is to place the ambulance bases near the patients hence

the peak of one seed is not the same as the average of seeds and bias functions are

142



●

●

0 200 400 600 800 1000

0.
14

2
0.

14
6

0.
15

0
0.

15
4

N

T
im

e

Average Time to Patients

KG
KG−PW
KG−PW−bias
KG−CRN−CS
KG−CRN

●

●

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N

Seed Reuse

1 2 3 4 5 6 7 8 9 10

Seed

S
am

pl
es

0
10

0
30

0
50

0

KGCRN−CS Seed Allocation

1 3 5 7 9 12 15 18 21 24 27 30

Seed

S
am

pl
es

0
50

15
0

25
0

KGCRN Seed Allocation

Figure 8.5: Top left: average journey time to patients. Top right: seed reuse
over iterations. Bottom: seed allocation by KGCRN without (left) and with (right)
bias functions. The algorithms with bias functions provide the best results. The
compound spheric assumption, which is violated in this benchmark, leads to greedy
sampling of observed seeds and sub optimal performance.

required. Results are summarized in Figure 8.5

Both algorithms with the surrogate model that includes bias functions provide

the best results in this benchmark, improving upon KG. The KGCRN with the

compound spheric assumption in a continuous search space leads to excessive sampling

of observed seeds agreeing with Lemma 8.5.2 and the conjectured behaviour of KGCRN

acquisition. Our proposed KGCRN with bias functions on the other hand does not

suffer and automatically queries many new seeds. Again, both KGPW variants sample

far more seeds by their construction which is less penalized in this benchmark. We

also performed experiments where the sum of ambulance journey times was optimized

and where the number of patients was fixed. All results, including ATO are reported

in Table 8.1. In all experiments, the KGCRN without bias functions never sampled a

new seed. We also report running time of all experiments and in all cases KG was

143



quickest, followed by the KGCRN variants and the KGPW variants used the most

computational time.

Table 8.1: Mean ± 2 standard errors of average performance for all benchmarks,
results that do not significantly differ from the best are in bold. The ability to revisit
seeds improves the ATO results and including bias functions improves AIS results
(or compound sphericity significantly harms AIS).

KG KGPW KGPW-bias

ATO, N=500 109.35± 1.88 111.86± 0.65 112.69± 0.67

AIS, N=500 .1498± .0011 .1483 ± 0.0010 .1477 ± .0010

AIS, N=1000 .1455± .0010 .1450± 0.0010 .1435 ± .0009

AIS, sum time 4.66± 0.33 4.611± .045 4.449± .030

AIS, 30 patients .1498± .0009 .1468 ± .0008 .1467 ± .0009

KGCRN-CS KGCRN

ATO, N=500 120.99 ± 0.71 119.84 ± 1.13

AIS, N=500 .1512± .0010 .1482± .0010

AIS, N=1000 .1481± .0009 .1436 ± .0008

AIS, sum time 4.515± .035 4.430 ± .034

AIS, 30 patients .1482 ± .0008 .1467 ± .0009

Therefore both the ability to revisit old seeds and the modelling of bias

functions are necessary to make a robust algorithm that works across a variety of

problems.

8.7 Conclusion

We proposed an approach to simulation optimization with common random numbers

where the seed of the random number generator used within a stochastic objective

function is an input to be chosen by the optimization algorithm. We augment

a standard Gaussian process model with two extra hyperparameters to model

structured noise (scenario influence), while maintaining the ability to predict the

average output of the target function in closed form. Matching this augmented model,

we propose KGCRN that quantifies the expected value of evaluating the objective for

given decision variable and seed, providing a clean framework that allows Bayesian

optimization to automatically exploit CRN where this is beneficial, and resort to

144



standard KG where not. Moreover, the proposed KGCRN algorithm structure does

not add significant complexity over the equivalent non-CRN Knowledge Gradient

due to the fundamental structure of CRN.

In future work we plan to augment other problem settings with common ran-

dom numbers, such as multi-fidelity optimization, simulations with input uncertainty

and multi-objective optimization.

145



Chapter 9

Conclusions and Future Work

9.1 Conclusion

We have considered a range of problems, and in every case using a simple principled

Value of Information approach popularised by the Knowledge Gradient family of

algorithms. In Chapter 4 we showed how choosing a tool from a set for many points

in a domain is a generalisation of ranking and selection. We proposed the first

incarnation of the REVI algorithm that exploited the correlated posterior over the

domain enabled specifically by a Gaussian process. We applied this to the problem

of efficient selection of scheduling heuristics. Chapter 5 empirically demonstrated

the utility of freezing and caching computations enabling much larger Monte-Carlo

sample sizes without impacting computation time. We combined this with the

algorithm from the previous chapter to form Neighbours-REVI that outperformed a

recently published baseline with only marginal computational cost. In Chapter 6 we

proposed two new methods, first, CLEVI uses a convolution trick to account for local

task density and therefore avoid sampling on boundaries of the task space. Second,

REVI generalised the Knowledge Gradient to the conditional multi-task setting

and, building on the previous chapter, used a computationally efficient Monte-Carlo

integral over tasks. We then moved onto optimisation of a weighted average or integral

of a function in Chapter 7 where we proposed to modify the Expected Improvement

and standard Knowledge Gradient acquisition functions to this case. The result

was to simply replace terms in the standard acquisition functions with Monte-Carlo

146



estimators. Simulation optimisation with common random number and Gaussian

processes has been largely overlooked. In Chapter 8, we apply the same value of

information procedure (arriving at a different algorithm to a previous attempt) to

combine Knowledge Gradient with Common Random Numbers. We show that a

particular assumption considered by previous works, compound sphericity, leads to

poor modeling and degraded performance in certain applications. We overcome this

by including a single extra parameter to model seed specific bias functions allowing

the algorithm to appropriately sample old and new seeds.

9.2 Future Work

There remain problems where a value of information approach can lead to fast

efficient algorithms.

In the simulation optimisation with input uncertainty, we assumed the uncer-

tainty distribution is fixed over time. However, one may consider a setting in which

a user with a given budget can choose between improving the distribution over the

uncertain input, or choose to collect more simulation data.

We investigated common random numbers for global optimisation. We plan

to investigate the multi-task conditional optimisation problem setting with CRN to

incorporate covariance in noise across solutions as well as tasks, such that multiple

optimisation problems can simultaneously benefit from the same variance reduction.

We have not looked at simulation optimisation with input uncertainty to

optimise the worst case, i.e., the minimum of functions instead of the average

of functions. A traditional value of information derived procedure will not yield

an algorithm that is asymptotically consistent as shown in Chapter 3.3.4. Hence

there may be potential in researching an approximate value of information recipe

for deriving approximately myopically optimal acquisition functions that are still

asymptotically consistent.

147



Appendix A

Proofs from Chapter 4

A.1 Proof of Theorem 4.1

The REVI, NEVI, and EVI policies are all asymptotically optimal, meaning that

given an infinite sampling budget they will always find the best tool for each task.

Here we only prove the case for the REVI policy, however these results also apply to

the NEVI and EVI policies.

Theorem 4.1 When sampling according to the REVI policy, as the budget goes to

infinity, N → ∞, the sequence of mappings converges almost surely to SN (xt) =

argmax
a

ζt,a for all i.

We prove Theorem 4.1 in five parts. The first part shows that the expected

improvement, the REVI function, of sampling a (task, tool) pair is non-negative,

collecting an extra sample is always expected to improve, or maintain, the predicted

portfolio performance. The second part shows that the expected improvement of a

(task, tool) pair is zero if and only if the posterior variance is zero. The third part

shows that if infinite samples are allocated to a given (task, tool) pair, the posterior

variance and expected improvement are zero and the true performance is known

for the (task, tool) pair. The fourth part simply states that if there is no expected

improvement in a pair, then the true performance must be known. Finally, we show

that in the limiting case of an infinite sampling budget, the case in which only a

subset of pairs has non-zero expected improvement would imply a pair outside the

subset must have been sampled whilst it did not maximize expected improvement

148



thus contradicting the REVI policy. Hence to be consistent with the REVI policy,

all (task, tool) pairs must be sampled until there is no expected improvement and

the true expected performance values are known and equal to the posterior means

for all pairs. Therefore, the mapping chooses the correct tool for all tasks. These

four parts are broken down into the following three propositions and one final proof.

A.1.1 Preparatory Material

The following proposition states that the expected improvement in the predicted

portfolio performance is always non-negative. The result applies to NEVI(t, a) and

EVI(t, a) since they are both subsets of the same summation that is used to calculate

REVI(t, a).

Proposition A.1.0.1 REVIn(t, a) > 0 for all (t, a) ∈ {1, ..,M} × {1, .., A}.

Proof Substituting the appropriate terms, the REVI function of Equation (4.9) is

defined as

REVIn(t, a) =
∑
j

wjE
[
max
b
µn+1
j,b −max

b
µnj,b

∣∣∣∣Fn, (t, a)n+1 = (t, a)

]
. (A.1)

Taking a single term from the summation in Equation (A.1) and temporarily dropping

the j subscripts and the conditioning terms for clarity, we can define the highest

and second highest means µn(1) = maxb µ
n
b and µ(2) = maxb 6=(1) µ

n
b , such that a single

term becomes

E
[
max
b
µn+1
b − µn(1)

]
= E

[
max

{
max
b 6=a

µnb − µn(1) , µ
n
a − µn(1) + σ̃nj (t, a)Z

}]

=


E
[
max{0 , µna − µn(1) + σ̃nj (t, a)Z}

]
a 6= (1)

E
[
max{µ(2) − µ(1) , σ̃

n
j (t, a)Z}

]
a = (1)

149



where Z is a standard normal random variable. The case for a = (1) may be

rearranged to be of the same form as the a 6= (1) case:

E
[
max{µ(2) − µ(1) , σ̃

n
j (t, a)Z}

]
= E

[
max{0 , µ(1) − µ(2) + σ̃nj (t, a)Z}

]
−E[µ(1) − µ(2) + σ̃nj (t, a)Z]

= −E
[
min{0 , µ(1) − µ(2) + σ̃nj (t, a)Z}

]
= E

[
max{0 , µ(2) − µ(1) + σ̃nj (t, a)Z}

]
,

where the second line comes from the difference between the partial expectation

and the full expectation and the third line is due to the symmetry of the normal

distribution. Therefore we may write the original expectation for both cases a = (1)

and a 6= (1) as

E
[
max
b
µn+1
b

]
− µn(1) = E

[
max{0 , −|µa −max

b 6=a
µb|+ σ̃nj (t, a)Z}

]
. (A.2)

By the convexity of the max operator and Jensen’s inequality the expectation in

Equation (A.2) must be non-negative. All of the weights are non-negative, therefore

REVIn(t, a) is a sum of the expectations of non-negative random variables therefore

REVIn(t, a) > 0. �

We next show that is is only zero when the posterior variance of a given pair

is zero, again this result applies to NEVI and EVI since they are a subset of the

same summation as REVI.

Proposition A.1.0.2 REVIn(t, a) = 0 if and only if Σn
tj,a = 0 for all j ∈ {1, ..,M}.

Proof We first prove that REVIn(t, a) = 0 ⇒ Σtj,a = 0 for all j. If the sum

in Equation (A.1) is equal to zero, each and every expectation of a non-negative

random variable must also be equal to zero. Therefore the non-negative random

variable is identically zero implying −|µna −maxb 6=a µb|+ σ̃nj (t, a)Z 6 0 for all Z ∈ R

which implies σ̃nj (t, a) = 0. Therefore REVIn(t, a) = 0 ⇒ σ̃nj (t, a) = 0 for all

j. It is easily shown that σ̃nj (t, a) = 0 ⇔ Σtj,a = Σjt,a = 0 and we have that

REVIn(t, a) = 0⇒ Σn
tj,a = 0 for all j.

150



We now prove the reverse direction, Σn
tt,a = 0 ⇒ REVIn(t, a) = 0. Since Σn

a is a

positive semi-definite (PSD) matrix all principal 2× 2 sub-matrices are also PSD

and Hadamard’s inequality implies that Σtt,a = 0⇒ Σtj,a = Σjt,a = 0 for all j and

σ̃nj (t, a) = 0 for all j. Evaluating the REVI function yields

REVIn(t, a) =
∑
j

wjh(∆n
j,a, 0) =

∑
j

0 = 0. (A.3)

�

We next show that when a pair is sampled infinitely often, the variance

reduces to zero along with any expected improvement. The result does not depend

on REV I(t, a) but only on the previous two propositions, therefore it applies to

NEVI and EVI with only a change of notation.

Proposition A.1.0.3 If a sampling procedure samples (task, tool) pair (t, a) infin-

itely often, then REVI∞(t, a) = 0 and µ∞t,a = ζt,a almost surely.

Proof The sigma algebra generated by the data F∞ contains infinitely many samples

of Yt,a with finite variance, σ2
ε,a < ∞. The strong law of large numbers implies

θt,a is F∞-measurable. Therefore the expectation of θt,a conditioned on F∞ is the

true mean, E[θt,a|F∞] = µ∞t,a = E[Yt,a] = ζt,a, and the posterior variance is zero,

Var[θt,a|F∞] = Σ∞tt,a = 0. Proposition A.1.0.2 implies that REVI∞(t, a) = 0. �

The following proposition simply states that if expected improvement is zero,

the true performance is already known. However, it does not assume that infinite

samples have been allocated to a given pair. Again this proof does not rely on the

REVI function therefore applies to the NEVI and EVI policies, too.

Proposition A.1.0.4 For a given pair (t, a) with positive prior variance Σ0
tt,a > 0, if

REVIn(t, a) = 0 then the posterior mean is the true expected performance µnt,a = ζt,a.

Proof By Proposition A.1.0.2 the posterior variance is zero Σn
tt,a = 0. Proof of the

implication Σn
tt,a = 0⇒ µnt,a = ζt,a is omitted as it simply follows from the consistency

of the conjugate Gaussian posterior distribution which may be demonstrated in this

151



instance using Equation (4.5). The posterior variance of a pair, Σn
tt,a, will be zero if

either there is no observation noise σ2
ε,a = 0 and one sample of Yt,a is collected, or if

infinite samples are collected of a noisy observation. In both cases it is easily shown

that µn(t, a) = ζt,a.

A.1.2 Proof of Theorem 4.1

The above four propositions are results relating to a single (task, tool) pair and show

that there is always an expected improvement from sampling a pair unless infinite

samples are allocated to the pair and the true performance is known. Below, the

final part of the proof relates to all the (task, tool) pairs when sampling according

to the REVI/NEVI/EVI policies in the limit of infinite samples. The proof shows

that a limiting state in which a subset of pairs has non zero expected improvement

leads to a contradiction. Therefore all pairs must have zero improvement, the true

expected performance is known, and the mapping selects the true best tool for every

task maximizing portfolio performance.

Proof When sampling according to the REVI policy, assume that in the

infinite limit N → ∞ there exists a set of (task, tool) pairs, I, for which the

expected improvement is strictly positive, I = {(t, a); REVI∞(t, a) > 0}, and by

the non-negativity of REVI given in Proposition A.1.0.1 we denote the complement

IC = {(i′, a′); REVI∞(i′, a′) = 0}.

By the contrapositive of Proposition A.1.0.3, each pair (t, a) ∈ I must have

been sampled finitely, and therefore there exists a finite time in the sampling history

after which (t, a) ∈ I is no longer sampled, ñ(t, a) = min{n; (t, a) /∈ {(t, a)}∞n }. We

now denote the latest stage in the sampling history at which a finitely sampled

pair was selected by the policy ñ = max{ñ(t, a); (t, a) ∈ I)}. Therefore we may

rewrite the set of finitely sampled pairs as those that are never sampled after ñ,

I = {(t, a); (t, a) /∈ {(t, a)}∞ñ }.

The assumption that in the infinite limit there exist pairs with positive

improvement REVI∞(t, a) > 0 for (t, a) ∈ I implies that there exists a time n∗ > ñ

152



at which a finitely sampled pair has the largest expected improvement

min
(t,a)∈I

REVIn
∗
(t, a) > max

(i′,a′)∈IC
REVIn

∗
(i′, a′),

therefore (t, a) ∈ I would be sampled by the REVI policy at time n∗ > ñ. However

by assumption it is shown that all pairs in (t, a) ∈ I are not sampled after time

ñ. This contradiction implies that in the limit of infinite sampling budget, a case

in which a subset of pairs has strictly positive improvement contradicts the REVI

policy.

Therefore, under the REVI policy, in the infinite sampling limit all pairs must

have zero expected improvement REV I∞(t, a) = 0 for all (t, a). This implies that

Σ∞i,a = 0 for all (t, a) and therefore by Proposition A.1.0.4 we have that µ∞t,a = ζt,a

for all pairs and the mapping selects the true best tool for every task

S∞(xt) = argmax
a

µ∞t,a = argmax
a

ζt,a.

�

A.2 Dynamic Programming Formulation

For each tool, the posterior performance distribution θa is given by a multivariate

normal that is parametrised by a mean and covariance matrix, therefore we define a

state of sampling as the tuple of all the multivariate normal parameters, one set for

each tool:

s = ((µ1,Σ1), ..., (µA,ΣA)) ∈ S

where µa ∈ RM and Σa ∈ RM×M . We define the state at a stage n during sampling

Sn ∈ S, where the state is updated after each new sample according to Equations (6)

and (7) in the main document that can be used to define the state transition function.

A policy, π, is a function giving the next (task, tool) to be sampled, and we denote

the set of all possible policy functions Π. The terminal value function is given by

V N (s) = PN =
∑

twt maxa µ
N
t,a, however this quantity is only FN measurable. For

153



any time n < N during sampling, for any state s ∈ S, the expectation of the terminal

value assuming the remaining N − n samples are allocated according to π can be

calculated:

V n,π(s) = E

[∑
t

wt max
a

µNt,a

∣∣∣∣Fn, Sn = s, π

]
. (A.4)

Maximizing the expectation of the final predicted portfolio performance over all

possible policies for all s ∈ S gives the value function of the optimal policy, the

optimal value function:

V n(s) = sup
π

E

[
M∑
t=1

wt max
a

µNt,a

∣∣∣∣Fn, Sn = s, π

]
.

Similarly a policy π∗ that maximizes the final value given by Equation A.4, for any

state s ∈ S and at any stage during sampling n < N , is said to be optimal,

π∗ ∈ argmax
π

V n,π(s). (A.5)

Next we define the Q-values for this particular problem that give the expected

optimal final value starting from any state s given that the next decision (t, a)n+1

will be (t, a),

Qn(s, t, a) = E[V n+1(Sn+1)|Fn, (t, a)n+1 = (t, a), Sn = s]. (A.6)

A policy that determines samples by maximizing the Q-values is an optimal policy,

by choosing to maximize the future value function in the current step for all s ∈ S,

(t, a)n+1 = argmax
t,a

Qn(s, t, a). (A.7)

A.2.1 Myopic Optimality of the REVI Policy

This result is similar to the result for the Knowledge Gradient Policy for Correlated

Normal Beliefs (Frazier et al. [2009a], Remark 1). Samples allocated according to

the REVI policy are determined by maximizing Equation 4.9 from the main text

154



restated here,

(t, a)n+1 = argmax
t,a

E

∑
j

wjmax
b
µn+1
j,b

∣∣∣∣Fn, (t, a)n+1 = (t, a)

−∑
j

wjmax
b
µnj,b

(4.9)

In the special case where there is only one sample left, n = N − 1, we may rewrite

the above equation

(t, a)N = argmax
t,a

E

∑
j

wjmax
b
µNj,b

∣∣∣∣FN−1, (t, a)N = (t, a)


−
∑
j

wjmax
b
µN−1
j,b

= argmax
t,a

QN−1(SN−1, t, a)− V N (SN−1)

= argmax
t,a

QN−1(SN−1, t, a). (A.8)

The second line is using the definition given by Equation (A.6), the final term on the

right hand side does not depend on (t, a)N and so may be dropped. Equation (A.8)

satisfies Equation (A.5) that defines an optimal policy. Therefore the REVI policy

is an optimal policy in the case when there is only one sample left, REVI policy is

myopically optimal:

Theorem A.2.1 For each state s ∈ S,

V N−1,REV I(s) = sup
(t,a)N

V N−1,(t,a)N (s) = V N−1(s).

A.2.2 Asymptotic Optimality

We have already provided a proof for the infinite sampling limit of the REVI

policy and so we briefly restate the same theorem in a Dynamic Programming

setting here. Proofs of the following assumptions are easily adapted from the

propositions given above and proofs found in Frazier et al. [2008] and Frazier

et al. [2009a] with the inclusion of appropriate summation symbols, therefore we

do not repeat them here. The state, s ∈ S, value functions, V n(s), and Q-values

are defined above. We denote the optimal value function with a variable final

155



budget N as V n(s;N), we assume the state after infinite samples, S∞, exists and

is finite (see Frazier et al. [2009a] Lemma A.5) and that there exists an upper

bound on the value of the optimal policy as the sampling budget tends to infinity,

limN→∞ V
n(s;N) = U(s) = E

[∑
twt maxa θt,a

∣∣S0 = s
]

(see Frazier et al. [2009a]

Lemma A.4). We further assume that as the number of samples for a given pair

(i, a) approaches infinity, the Q-value for that pair is equal to the current value,

QN−1(s, t, a) = V N (s), meaning there is no expected improvement in sampling from

(t, a) (Frazier et al. [2009a] Lemma A.7). If the Q-value equals the terminal value

for all (task, tool) pairs then the value is equal to the upper bound (Frazier et al.

[2009a] Lemma A.6). As the sampling budget goes to infinity, the value of an optimal

policy approaches the upper bound, the REVI policy also approaches the same upper

bound therefore must equal the value of the optimal policy (Frazier et al. [2009a]

Theorem 4),

Theorem A.2.2 For each s ∈ S limN→∞ V
0,REV I(s;N) = limN→∞ V

0(s;N).

A.2.3 Bound on Sub-Optimality, Proof of Theorem 4.3.2

For the REVI policy, we may calculate an upper bound on the difference in value

functions between the optimal policy and the REVI policy. Equation (4.14) of

Theorem 4.3.2 from the main text is restated here,

max
π

E[PN |Fn, π]− E[PN |Fn,REVI] 6 max
(t,a)N−1

n+1

N−2∑
k=n

√
2π

M∑
j=1

wj |σ̃kj (tk+1, ak+1)|.

(4.14)

For convenience, we introduce a vector norm function ‖u‖=
∑M

t=1wt|ut| and make

explicit the state in σ̃n(t, a), which is replaced by σ̃(Sn, t, a). By replacing the terms

in the above equation, we may rewrite it in the dynamic programming formulation:

Theorem A.2.3 For each s ∈ S and n 6 N , the difference in value between the

optimal and REVI policies is bounded by

V n(s)− V n,REVI(s) 6 max
(t,a)N−1

n+1

N−2∑
k=n

√
2π‖σ̃(S̃k, tk+1, ak+1)‖

156



where S̃k is the state where only the covariance matrices are updated according to

{(t, a)}k1.

This result is similar to the result of Frazier et al. [2009a] Theorem 5. The proof has

three parts, firstly the difference in one step of the optimal policy is derived, secondly,

by induction this can be applied to multiple steps, thirdly, we can substitute the

REVI value function into the previous results to yield a sub-optimality upper bound.

A.2.4 Preparatory Material

This first result is based on Frazier et al. [2009a] Lemma A.8 and derives the difference

in value for one step. We use this later given that the value for one step ahead of

the REVI policy and the optimal policy are equal.

Proposition A.2.3.1 Let s ∈ S, then V N−1(s) 6 V N (s)+max
(t,a)N

‖σ̃(s, tN , aN )‖/
√

2π.

Proof Bellman’s Equation implies

V N−1(s) = max
(t,a)N

E[V N (SN )|SN−1 = s, (t, a)N ].

We may find an upper bound for the inner term on the right hand side:

V N (SN ) =
∑
j

wjmax
a

µNj,a

=
∑
j

wj max{µN−1
j,aN

+ Zσ̃j(S
N−1, tN , aN ) , max

a′ 6=aN
µN−1
j,a′ }

≤
∑
j

wjmax
a
{µN−1

j,a }+ |Z||σ̃j(SN−1, tN , aN )|

≤ V N (SN−1) + |Z|‖σ̃(SN−1, tN , aN )‖.

157



Substituting this back into the original proposition:

V N−1(s) ≤ max
(t,a)N

E
[
V N (SN−1) + |Z|‖σ̃(SN−1, tN , aN )‖

∣∣∣∣SN−1 = s

]
= V N (s) + max

(t,a)N
E
[
|Z|‖σ̃(SN−1, tN , aN )‖

∣∣∣∣SN−1 = s

]
= V N (s) + E[|Z|] max

(t,a)N
‖σ̃(s, tN , aN )‖

= V N (s) + max
(t,a)N

‖σ̃(s, tN , aN )‖/
√

2π.

The following result is modified from Frazier et al. [2009a] Lemma A.9 which

generalises the previous single step difference in value to multiple steps with induction.

Proposition A.2.3.2 For a given state Sn ∈ S, then

V n(Sn) 6 V N−1(Sn) +
1√
2π

max
(t,a)N−1

n+1

N−2∑
k=n

‖σ̃(S̃k, tk+1, ak+1)‖

where S̃k is the state where only the covariance matrices Σk
a are sequentially updated

according to the sampling sequence {(t, a)}kn and Equation (7) in the main paper.

Proof We prove this by induction, the base case for n = N − 1 is trivially true.

For the following terms we first replace the term in Bellman’s Equation using the

induction hypothesis

V n(s) = max
(t,a)n+1

E[V n+1(Sn+1)|Sn = s]

≤ max
(t,a)n+1

E

[
V N−1(Sn+1) +

1√
2π

max
(t,a)N−1

n+2

N−2∑
k=n+1

‖σ̃(S̃k, tk+1, ak+1)‖
∣∣∣∣Sn = s

]
.

158



We may replace the V N−1(Sn+1) using Proposition A.2.3.1

V n(Sn) ≤ max
(t,a)n+1

E
[
V N (Sn) + ‖σ̃(S̃n, tn+1, an+1)‖/

√
2π

+ max
(t,a)N−1

n+2

N−2∑
k=n+1

‖σ̃(S̃k, tk+1, ak+1)‖/
√

2π

∣∣∣∣Sn = s

]

≤ max
(t,a)n+1

E

[
V N (Sn) + max

(t,a)N−1
n+2

N−2∑
k=n

‖σ̃(S̃k, tk+1, ak+1)‖/
√

2π

∣∣∣∣Sn = s

]

≤ V N−1(Sn) + max
(t,a)N−1

n+1

N−2∑
k=n

‖σ̃(S̃k, tk+1, ak+1)‖/
√

2π.

A.2.5 Proof of Theorem A.2.3

Theorem A.2.3 For each Sn ∈ S and n 6 N ,

V n(Sn)− V REVI,n(Sn) 6 max
(t,a)N−1

n+1

N−2∑
k=n

‖σ̃(S̃k, tk+1, ak+1)‖/
√

2π.

Proof Since the REVI policy is myopically optimal we have that V N−1(s) =

V REVI,N−1(s). However, since the REVI policy is only myopically optimal we

also have that V REVI,N−1(s) ≤ V REVI,n(s), substituting into the inequality in Pro-

postion A.2.3.2 yields the above formula.

159



Appendix B

Proofs and Further Experiments

from Chapter 8

B.0.1 Estimating the Target

This following result is a simple consequence of the symmetry of the model across

seeds proven in Lemma B.0.2. This is consistent with other CRN and non-CRN

methods that do not make the seed explicit but do incorporate off-diagonal noise

matrix covariance. We first derive the posterior mean and then posterior covariance.

Proposition B.0.1 (Proposition 8.3.0.1) For any given kernel over the domain

X × N+ that is of the form kθ̄(x, x
′) + δss′kε(x, x

′), and a dataset of n input-output

triplets Dn, the posterior over the target is a Gaussian process given by

θ̄(x)|Dn ∼ GP (µnθ̄ (x), knθ̄ (x, x′))

µnθ̄ (x) = µn(x, s′)

knθ̄ (x, x′) = kn(x, s′, x′, s′′)

where s′, s′′ ∈ N+ \ Sn with s′ 6= s′′ any two unobserved unequal seeds.

Lemma B.0.2 Let θ(x, s) be a realization of a Gaussian Process with µ0(x, s) = 0

and any positive semi-definite kernel of the form k(x, s, x′, s′) = kθ̄(x, x
′)+δss′kε(x, x

′).

For all x ∈ X, sobs ∈ Sn, and s, s′, s′′ ∈ N+ \ Sn, the posterior mean and kernel

160



satisfy

µn(x, s) = µn(x, s′)

kn(x, sobs, x
′, s) = kn(x, sobs, x

′, s′) (B.1)

kn(x, s, x′, s′) = kn(x, s, x′, s′′) = kn(x, s′, x′, s′′) (B.2)

Proof Writing out the posterior mean in full from Equation 8.16,

µn(x, s) = k0(x, s, X̃n)K−1Y n

=


(
kθ̄(x,X

n) + (1ᵀs=Sn ◦ kε(x,Xn))
)
K−1Y n s ∈ Sn

kθ̄(x,X
n)K−1Y n s ∈ N+ \ Sn

where ◦ is element-wise product and 1s=Sn is a column vector of zeros for all

s ∈ N+ \ Sn. The proofs for Equations B.1 and B.2 follow similarly from Equation

8.17. �

We can now prove Proposition 8.3.0.1.

Proof The objective of optimization, θ̄(x), is given by the average output over

infinitely many seeds which may be written as the limit

θ̄(x) = lim
Ns→∞

1

Ns

Ns∑
s=1

θ(x, s). (B.3)

Adopting the shorthand En[...] = E[...|Dn], we first consider the posterior expected

performance,

En[θ̄(x)] = En

[
lim

Ns→∞

1

Ns

Ns∑
s=1

θ(x, s)

]

= lim
Ns→∞

1

Ns

Ns∑
s=1

En [θ(x, s)]

= lim
Ns→∞

1

Ns

Ns∑
s=1

µn(x, s)

161



Let ns = max{Sn} be the largest observed seed. The sum of posterior

means can be split into sampled seeds s ∈ {1, ..., ns} and unsampled seeds s ∈

{ns + 1, ...., Ns},

En[θ̄(x)] = lim
Ns→∞

1

Ns

 ns∑
s=1

µn(x, s) +

Ns∑
s′=ns+1

µn(x, s′)


= lim

Ns→∞

1

Ns

(
ns∑
s=1

µn(x, s) + (Ns − ns)µn(x, ns + 1)

)

= lim
Ns→∞

1

Ns

(
ns∑
s=1

µn(x, s)− nsµn(x, ns + 1)

)
+ µn(x, ns + 1)

= µn(x, ns + 1).

where we have used Lemma B.0.2 to simplify. Similarly for the covariance, writing

each θ̄(x) term as the limit of a sum over seeds,

En
[(
θ̄(x)− En[θ̄(x)]

)(
θ̄(x′)− En[θ̄(x′)]

)]
= En

[(
lim

Ns→∞

1

Ns

Ns∑
s=1

θ(x, s)− µ(x, s)

)(
lim

Nt→∞

1

Nt

Nt∑
s′=1

θ(x′, s′)− µ(x′, s′)

)]

= lim
Ns,Nt→∞

1

NsNt

Ns,Nt∑
s,s′=1

En
[
(θ(x, s)− µ(x, s))

(
θ(x′, s′)− µ(x′, s′)

)]
= lim

Ns,Nt→∞

1

NsNt

Ns,Nt∑
s,s′=1

kn(x, s, x′s′)

The domain in the limit of the summation, N+×N+, is unaffected by setting Nt = Ns.

162



The summation decomposes into four terms,

Ns∑
s,s′=1

kn(x, s, x′, s′) =

ns∑
s,s′=1

kn(x, s, x′, s′)︸ ︷︷ ︸
observed seeds full covariance

+

Ns∑
s′=ns+1

ns∑
s=1

kn(x, s, x′, s′)︸ ︷︷ ︸
observed-unobserved covariance

+

Ns∑
s=ns+1

kn(x, s, x′, s)︸ ︷︷ ︸
unobserved seeds variance

+
∑

ns<s6=s′≤Ns

kn(x, s, x′, s′)︸ ︷︷ ︸
unobserved seeds covariance

Ns∑
s,s′=1

kn(x, s, x′, s′) =

ns∑
s,s′=1

kn(x, s, x′, s′)︸ ︷︷ ︸
constant with Ns

+ 2(Ns − ns)
ns∑
s=1

kn(x, s, x′, s′)︸ ︷︷ ︸
linear with Ns

+ (Ns − ns)kn(x, s′, x′, s′)︸ ︷︷ ︸
linear with Ns

+ (Ns − ns)2kn(x, s′, x′, s′′)︸ ︷︷ ︸
quadratic with Ns

where s′ and s′′ are two unequal unobserved seeds. Dividing the final Equation by

N2
s and taking the limit Ns →∞, only the final term remains. �

Given the assumed kernel with independent and identically distributed differ-

ence functions, the average of all seeds includes finite observed seeds and infinitely

many identical unobserved seeds that dominate. Hence any one unobserved seed is an

estimate for the objective. Likewise the covariance across any two unique unobserved

seeds dominates the summation of full posterior covariance for the objective. Also

note that the prior kernel is unchanged, k̄0(x, x′) = k0(x, 1, x′, 2) = kθ̄(x, x
′) as

desired.

B.0.2 Proof of Theorem 8.4.1

Theorem B.0.3 (Theorem 8.4.1) Let xNr ∈ A be the point that KGCRN recom-

mends in iteration N . For each p ∈ [0, 1) there is a constant Kp such that with

probability p

lim
N→∞

θ̄(xNr ) > θ̄(xOPT )−Kpd

First we define V n(x, x′) = En[θ̄(x)θ̄(x′)].

163



Lemma B.0.4 Let x, x′ ∈ X, the limits of the series (µ̄n(x))n and (V n(x, x′))n

exist. Denote then by µ̄∞(x) and V∞(x, x′), respectively. We have

lim
n→∞

µ̄n(x) = µ̄∞(x) (B.4)

lim
n→∞

V n(x, x′) = V∞(x, x′) (B.5)

almost surely.

Proof θ̄(x) and θ̄(x)θ̄(x′) are integrable random variables for all x, x′ ∈ X by choice

of θ̄. Proposition 2.7 in Çınlar [2011] states that any sequence of conditional expect-

ations of an integrable random variable under an increasing filtration is uniformly

integrable martingale. Thus, both sequences converge almost surely to their respect-

ive limit. �

Lemma B.0.5 KGCRN
n (x, s) ≥ 0 for all (x, s) ∈ X × N+.

Proof Adopting the shorthand xnr = argmax
x∈X

µn(x, 0),

KGCRN
n (x, s) = E

[
max
x′∈X

µn(x′, 0) + σ̃n(x′, 0;x, s)Z − µn(xnr , 0)

]
= E

[
max
x′∈X

µn(x′, 0) + (σ̃n(x′, 0;x, s)− c)Z − µn(xnr , 0)

]

for any arbitrary constant c. By setting c = σ̃n(xnr , 0;x, s), the inner expression

satisfies µn(xnr , 0) + (σ̃n(xnr , 0;x, s)− c)Z − µn(xnr , 0) = 0 for all Z ∈ R and

max
x′∈X
{µ(x′, 0) + (σ̃n(x′, 0;x, s)− c)Z − µ0}

≥ µ(xnr , 0) + (σ̃n(xnr , 0;x, s)− c)Z − µn(xnr , 0) = 0

for all Z and KGCRN
n (x, s) may be written as the expectation of a non-negative

random variable. �

Lemma B.0.6 Given deterministic simulation outputs, there is no improvement in

164



re-sampling a sampled point.

KGCRN
n (xi, si) = 0

for all (xi, si) ∈ X̃n.

Proof The posterior covariance between the output at any point and the output at

an observed point is zero,

kn(xi, si;x, s) = k0(xi, si;x, s)− k0(xi, si; X̃n)
(
k0(X̃n; X̃n)

)−1
k0(X̃n;x, s)

= k0(xi, si;x, s)− [k0(X̃n; X̃n)]i︸ ︷︷ ︸
ith row

(
k0(X̃n; X̃n)

)−1
k0(X̃n;x, s)

= k0(xi, si;x, s)− eiᵀk0(X̃n;x, s)

= k0(xi, si;x, s)− k0(xi, si;x, s)

= 0

where ei is the ith row of the n× n identity matrix. Therefore σ̃n(x, s;xi, si) = 0 for

all (x, s) and KGCRN
n (x, s) = 0. �

Let ω denote an arbitrary sample path and note that ω determines an

observation for each query to a seed, as n→∞. Lemmas B.0.5 and B.0.6 and noting

that (x, s)n+1 = argmax KGCRN
n (x, s) together imply that no input (x, s) will be

sampled more than once when using KGCRN and so we only consider sample paths

ω where all elements are unique. Given finite X, there must be an x ∈ X that is

observed for infinite seeds on ω. We study the asymptotic behaviour KGCRN
n (x, s)

for n→∞ as a function of µn(x, 0), σ̃n(x′, 0, x, s).

Lemma B.0.7 If x is sampled for infinitely many seeds, then σ̃∞(x′, 0;x, s) = 0 for

all x′ ∈ X and KGCRN
∞ (x, s) = 0 for all s ∈ N+ almost surely.

Proof Setting xn+1 = x and assuming (xi, si) pairs are arranged such that sn+1 is

165



always a new seed,

lim
n→∞

σ̃n(x′, 0;x, sn+1) = lim
n→∞

|kn(x′, 0, x, sn+1)|√
kn(x, sn+1, x, sn+1)

= lim
n→∞

|k̄n(x′, x)|√
k̄n(x, x) + kε(x, x)

≤ lim
n→∞

√
k̄n(x′, x′)

√
k̄n(x, x)√

k̄n(x, x) + kε(x, x)

= 0

where the final line is by noting that k̄n(x, x) + kε(x, x) > 0 for all n and x. �

Lemma B.0.8 Let (x, s) be an input pair for which KGCRN
n (x, s) = 0. Then for all

x′ ∈ X

σ̃n(x′, 0;x, s) = c

where c is a constant.

Proof From Equation B.6, KGCRN
n (x, s) can be written as the expectation of a

non-negative random variable. Therefore the random variable itself must equate to

zero almost surely implying

max
x′∈X
{µ(x′, 0) + (σ̃n(x′, 0;x, s)− c)Z − µn(xnr , 0)} = 0

max
x′∈X
{µ(x′, 0) + (σ̃n(x′, 0;x, s)− c)Z} = max

x′′∈X
{µ(x′′, 0)}

for all Z ∈ R. This implies σ̃n(x′, 0;x, s) = c for all x′ ∈ X. �

Note the case where (x, s) ∈ X̃n we have that σ̃(x′, 0;x, s) = 0 for all x′ ∈ X.

Lemma B.0.9 Let s ∈ N+ \ Sn be an unobserved seed, if KGCRN
n (x, s) = 0 for all

x ∈ X, then argmax
x

µn(x, 0) = argmax
x

θ̄(x)

Proof By Lemma B.0.8, we have that k̄n(x, x′) = c for all x, x′ ∈ X and the covari-

ance matrix k̄n(X,X) is proportional to the all ones matrix. Hence θ̄(x)− µn(x, 0)

is a normal random variable that is constant across all x ∈ X and argmax
x∈X

µ(x, 0) =

166



argmax
x∈X

θ̄(x) holds. �

Lemmas B.0.6, B.0.7, consider evaluating KGCRN as the sampling budget

increases in a specific way. More generally, recall that KGCRN picks (x, s)n+1 ∈

argmax KGCRN
n (x, s) in each iteration n. Since θ(x, ·) is evaluated infinitely often

(by choice of x), KGCRN
n (x, ·)→ 0 for all x ∈ A holds almost surely and by Lemma

B.0.9 the true optimizer is known. There exist many proofs for KG like policies

showing that sample paths ω with finitely evaluated θ(x, ·) are impossible, or all x

are evaluated infinitely often almost surely [Frazier et al., 2008, 2009b, Salemi et al.,

2019, Xie et al., 2016] and hence we refrain from duplicating a proof here. Most (if

not all) proofs follow a similar argument by contradiction, if data is sequentially

allocated to maxima of the non-negative function KGCRN(x, s), then data will never

be re-allocated to an (x, s) for which θ̄(x) is known as such points are known minima

of KGCRN(x, s) = 0.

Next we consider a bound on the loss due to discretization of a continuous

search space. Suppose that X ⊂ Rd is a compact infinite set and A ⊂ X is a finite

set of discretization points. Suppose that µ̄0(x) = 0 for all x, and kθ̄(x, x
′) is a

four times differentiable Matern kernel e.g. the popular squared exponential kernel.

Suppose that θ̄(x) is drawn from the prior, i.e. let θ̄(x) ∼ GP (µ̄0(x), kθ̄(x, x
′)) then

the sample θ̄(x) over the set of functions is itself twice differentiable in X with

probability one. Let xOPT = argmax
x∈X

θ̄(x) and d = maxx′∈X minx∈A dist(x, x′) be

the largest distance from any point in the continuous domain X to it’s nearest

neighbor in A.

Proof The extrema of δ
δxi
θ̄(x) over X are bounded, the partial derivatives of

θ̄(x) are also GPs for our choice of kθ̄(x, x). Thus we can compute for every p ∈ [0, 1)

a constant Kp such that θ̄(x) is Kp Lipschitz continuous on X with probability at

least p, then there exists an x̄ ∈ A with dist(x̄, xOPT ) ≤ d and

θ̄(x̄) > θ̄(xOPT )−Kpd

holds with probability p. Finally the point recommended by KGCRN is the maximizer

167



of xNr ∈ argmax
x∈A

θ̄(x) and therefore is not worse than x̄

lim
N→∞

θ̄(xNr ) ≥ θ̄(x̄)

≥ θ̄(xOPT )−Kpd

�

B.0.3 Proof of Propositions 8.5.3 and 8.5.4

We next provide proofs for algorithm behaviour in the case of compound sphericity,

recall this corresponds to the difference functions reducing to constant offsets. Lemma

8.5.1 states that the difference µn(x, s)− µn(x, s′) = As −As′ is constant for all x.

Likewise the same relationship applies to σ̃n(x′, s′;x, s) that quantifies changes in

the posterior mean and therefore must also maintain the symmetry over seeds s′,

Lemma B.0.10 Let x, x′ ∈ X, s, s′ ∈ N+, then the difference in posterior mean

updates satisfies

σ̃n(x′, s′;x, s) = σ̃n(x′, 0;x, s) + hn(s′, x, s).

Proof

σ̃n(x′, s′;x, s) =
kn(x′, s′;x, s)√
kn(x, s, x, s)

=
1√

kn(x, s, x, s)

(
kθ̄(x

′, x) + η2δss′

−
(
kθ̄(x

′, Xn) + η21
ᵀ
s′=Sn

)
K−1

(
kθ̄(X

n, x) + η21s=Sn

))

= σ̃(x′, 0;x, s) +

η2δss′ − η21
ᵀ
s′=SnK

−1

(
kθ̄(X

n, x) + η21s=Sn

)
√
kn(x, s, x, s)

= σ̃(x′, 0;x, s) + h(s′, x, s)

�

168



As a result of the symmetry over seeds it is possible to use any seed s ∈ N+

as the target of optimization formalized in the following Lemma.

Lemma B.0.11 Let x ∈ X, s, s′ ∈ N+, then

KGCRN
n (x, s) = E[max

x′∈X
µn(x′, s′) + σ̃n(x′, s′;x, s)Z − max

x′′∈X
µn(x′′, s′)].

Proof

KGCRN
n (x, s) = E[max

x′∈X
µn(x′, 0) + σ̃n(x′, 0;x, s)Z − max

x′′∈X
µn(x′′, 0)]

= E[max
x′∈X

µn(x′, s′)−As′ + (σ̃n(x′, s′;x, s)− h(s′, x, s))Z

− max
x′′∈X

µn(x′′, s′)−As′ ]

= E[max
x′∈X

µn(x′, s′) + σ̃n(x′, s′;x, s)Z − max
x′′∈X

µn(x′′, s′)]− h(s′, x, s)E[Z]

= E[max
x′∈X

µn(x′, s′) + σ̃n(x′, s′;x, s)Z − max
x′′∈X

µn(x′′, s′)]

Proposition B.0.12 (Proposition 8.5.3) Let θ(x, s) be a realization of a Gaus-

sian process with the compound spheric kernel and ρ = 1. If X = {x1, ..., xd} and

X̃n = {(x1, 1), ..., (xd, 1)} then for all (x, s) ∈ X × S

KGCRN(x, s) = 0

and the maximizer of θ̄(x) is known.

Proof Lemma B.0.11 shows that any seed can be used as the target of

optimization. Therefore we may choose s = 1 as the target. All x have been sampled

for s = 1 therefore σ̃n(x, 1;x′, s′) = 0 for all x ∈ X and s′ ∈ N+. Hence

KGCRN(x, s) = E[max
x′∈X

µn(x′, 1) + 0Z − max
x′′∈X

µn(x′′, 1)]

= 0

for all x, s ∈ X × N+. By Lemma B.0.9 the maximizer argmax
x∈X

θ̄(x) is known (al-

though it’s underlying value, max θ̄(x), is not known). �

169



Proposition B.0.13 (Proposition 8.5.4) Let θ(x, s) be a realization of a Gaus-

sian process with the compound spheric kernel with ρ = 1. Let X ⊂ Rd be a set of

possible solutions and let X̃n = {(x1, 1), ..., (xn, 1)} be the set of sampled locations

and Xn = (x1, ..., xn). Define

KGCRN
n (x, s;A) = E

[
max

x′∈A∪{x}
µn+1(x′, 0)− max

x′∈A∪{x}
µn(x′, 0)

∣∣∣∣Dn, (x, s)n+1 = (x, s)

]
.

Then for all x ∈ X

KGCRN
n (x, 1;Xn) > KGCRN

n (x, 2;Xn)

and therefore maxx KGCRN
n (x, 1;Xn) > maxx KGCRN

n (x, 2;Xn) and seed s = 2 will

never be evaluated.

Proof By Lemma B.0.11, we may set s = 1 as the target of optimization. For

all sampled points i = 1, ..., n, we have that σ̃n(xi, 1;x, s) = 0 and µn(xi, 1) = yi.

Let Ȳ n = maxY n. The expression for Knowledge Gradient becomes

KGCRN
n (x, s;Xn) = E

[
max{Ȳ n, µn(x, 1) + σ̃n(x, 1;x, s)Z}

]
−max{Ȳ n, µn(x, 1)}

= E
[

max{0, µn(x, 1)− Ȳ n + σ̃n(x, 1;x, s)Z}
]

= ∆(x)Φ

(
∆(x)

|σ̃n(x, 1;x, s)|

)
− |σ̃n(x, 1;x, s)|φ

(
∆(x)

|σ̃n(x, 1;x, s)|

)
= f

(
∆(x), |σ̃n(x, 1;x, s)|

)
where Φ(·), φ(·) and cumulative and density functions of the Gaussian distribution,

∆(x) = µn(x, 1)− Ȳ n and f(a, b) is the well known expected improvement acquisition

function derived from the expectation of a truncated Gaussian random variable. Note

that the function f(a, b) is monotonically increasing in b, d
dbf(a, b) = φ(−a/b) > 0.

Hence, to prove the proposition, it is sufficient to show |σ̃n(x, 1;x, 1)| > |σ̃n(x, 1;x, 2)|

for all x ∈ X. Firstly we may simplify σ̃n(x, 1;x, 1) as follows

σ̃n(x, 1;x, 1) = kn(x, 1, x, 1)/
√
kn(x, 1, x, 1) (B.6)

=
√
kn(x, 1, x, 1). (B.7)

170



Substituting this into the inequality yields

|σ̃n(x, 1;x, 1)| > |σ̃n(x, 1;x, 2)|√
kn(x, 1, x, 1) >

|kn(x, 1, x, 2)|√
kn(x, 2, x, 2)

1 >
|kn(x, 1, x, 2)|√

kn(x, 2, x, 2)kn(x, 1, x, 1)

−1 < corr(θ(x, 1), θ(x, 2)|Dn) ≤ 1

where the last line is true by the positive semi-definiteness of the kernel, the correla-

tion between two random variables cannot be greater than one. �

The above proof demonstrates that allocating samples according to KGCRN will

always sample seed s = 1. The target is stochastic however the objective is determin-

istic and the new output yn+1 ∼ N(µn(x, 1), kn(x, 1, x, 1)). The acquisition function

simplifies to

KGCRN
n (x, 1;Xn) = E

[
max{0, µn(x, 1) +

√
kn(x, 1, x, 1)Z − Ȳ n}

]
= E

[
max{0, yn+1 − Ȳ n}

∣∣Dn, xn+1 = x, sn+1 = 1
]

where the last line is exactly the EI acquisition function of the famous EGO algorithm

of Jones et al. [1998b].

171



B.1 Further Experimental Results

●

●

10 20 30 40 50

0
5

10
15

20
25

30

Opportunity Cost for ρ=1

N

O
C

KG
KG−PW
KG−CRN

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

●

●

● ● ● ●
●

●

●
● ●

●
●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

● ●
●

●

Opportunity Cost, n=20

ρ

O
C

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

● ●
●

●

●

● ● ●
● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

Opportunity Cost, n=50

ρ

O
C

●

●

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ= 1
ρ= 0

Seed Reuse Frequency

N

F
re

qu
en

cy

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

●
●

●
● ●

●
●

●
● ●

●

Seed Reuse, n=20

ρ

F
re

qu
en

cy

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ● ● ● ● ● ● ● ● ●

●
● ●

● ● ●
● ● ● ● ●

● ● ●
● ●

●
● ● ● ●

●

Seed Reuse, n=50

ρ

F
re

qu
en

cy
Figure B.1: Synthetic GP data with offsets and white noise only (compound spheric).
For low ρ, all algorithms perform similarly. As ρ increases, KGCRN samples more
old seeds and outperforms other methods, KGPW samples singles first, duplicating
KG and sampling doubles later improving upon KG.

●

●

10 20 30 40 50

0
5

10
15

20
25

30

Opportunity Cost for ρ=1

N

O
C

KG
KG−PW
KG−CRN

●

●

0.0 0.2 0.4 0.6 0.8 1.0

9
10

11
12

13
14

15

●
●

●

●
●

●
●

●

●

●

●

● ●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Opportunity Cost, n=20

ρ

O
C

●

●

0.0 0.2 0.4 0.6 0.8 1.0

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

●

●

●

●

●
●

●

●

●

● ●
●

●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

Opportunity Cost, n=50

ρ

O
C

●

●

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ= 1
ρ= 0

Seed Reuse Frequency

N

F
re

qu
en

cy

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●
● ●

●
● ● ●

●
● ● ●

● ●
● ● ● ● ●

Seed Reuse, n=20

ρ

F
re

qu
en

cy

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●
●

●
●

● ●
● ●

●
● ●

●
● ●

●

Seed Reuse, n=50

ρ

F
re

qu
en

cy

Figure B.2: GP synthetic data generated with η2 = 0 and ρ = σ2
b/(σ

2
b + σ2

w) holding
σ2
b + σ2

w = 502 constant. There is no significant benefit from bias functions alone.
Local difference correlation, is only useful when combined with global difference
correlation.

172



●

●

100 200 300 400 500

80
90

10
0

11
0

12
0

Average Profit

N

P
ro

fit

KG
KG_PW
KG−PW−Bias
KG−CRN−CS
KG−CRN

●

●

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Seed Reuse Frequency

N

●

●

100 200 300 400 500

0
1

2
3

4
5

6
7

Cumulative Time, hours

N

●

●

100 200 300 400 500

0
20

0
60

0
10

00

Bias Parameter,σb
2

N

P
ro

fit

●

●

100 200 300 400 500

0
20

0
60

0
10

00

Offset Parameter,η2

N

P
ro

fit
2

●

●

100 200 300 400 500

0
20

0
60

0
10

00

White Noise Parameter,σw
2

N

P
ro

fit
2

Figure B.3: ATO results. The KGPW algorithm samples singles early on, and never
learns a large offset parameter η2. KGCRN samples old seeds and eventually learns a
large offset parameter and never samples any new seeds. KG has smallest runtime,
followed by KGCRN variants then KGPW variants.

●

●

0 200 400 600 800 1000

0.
14

2
0.

14
6

0.
15

0
0.

15
4

Average Journey Time

N

KG
KG_PW
KG−PW−Bias
KG−CRN−CS
KG−CRN

●

●

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Seed Reuse Frequency

N

●

●

0 200 400 600 800 1000

0
5

10
20

30

Cumulative Time, hours

N

●

●

0 200 400 600 800 1000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

Bias Parameter,σb
2

N

P
ro

fit

●

●

0 200 400 600 800 1000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

Offset Parameter,η2

N

P
ro

fit
2

●

●

0 200 400 600 800 1000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

White Noise Parameter,σw
2

N

P
ro

fit
2

Figure B.4: The bias functions provide significant benefit to both KGCRN and KGPW.
Excluding bias functions, KGCRN −CS, leads to significant detriment sampling only
old seeds. The KGCRN variants learn larger offset parameters and require much
much less computation time.

173



●

●

100 200 300 400 500

4.
4

4.
5

4.
6

4.
7

4.
8

4.
9

Sum of Journey Times

N

●

●

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Seed Reuse Frequency

N

●

●

100 200 300 400 500

0
1

2
3

4

Cumulative Time, hours

N

KG
KG_PW
KG−PW−Bias
KG−CRN−CS
KG−CRN

●

●

100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

Bias Parameter,σb
2

N

P
ro

fit

●

●

100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

Offset Parameter,η2

N

P
ro

fit
2

●

●

100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

White Noise Parameter,σw
2

N

P
ro

fit
2

Figure B.5: The AIS problem with the sum of journey times in a simulation as the
objective. KGCRN variants improve performance over KG, and bias functions improve
performance over compound spheric variants. Seed reuse is almost maximized by all
methods.

●

●

100 200 300 400 500

0.
14

5
0.

15
0

0.
15

5
0.

16
0

Average Journey Time

N

KG
KG_PW
KG−PW−Bias
KG−CRN−CS
KG−CRN

●

●

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Seed Reuse Frequency

N

●

●

100 200 300 400 500

0
1

2
3

4

Cumulative Time, hours

N

●

●

100 200 300 400 500

0e
+

00
2e

−
04

4e
−

04

Bias Parameter,σb
2

N

P
ro

fit

●

●

100 200 300 400 500

0e
+

00
2e

−
04

4e
−

04

Offset Parameter,η2

N

P
ro

fit
2

●

●

100 200 300 400 500

0e
+

00
2e

−
04

4e
−

04

White Noise Parameter,σw
2

N

P
ro

fit
2

Figure B.6: All algorithm variants perform similarly and the offset and bias
parameters are much lower than the white noise parameter suggesting there is
little exploitable structure in the noise for this problem.

174



B.2 Algorithm Implementation Details

B.2.1 Hyperparameter Learning

All parameters are learnt by multi-start conjugate gradient ascent of the marginal

likelihood Rasmussen [2003]

P[Y n|X̃n, L, σ2
θ̄ , η

2, σ2
b , σ

2
w] = −1

2

(
(Y n − Ȳ )ᵀK−1(Y n − Ȳ ) + log(|K|) + n log(2π)

)
Kij = σ2

θ̄ exp

(
−1

2
(xi − xj)ᵀL(xi − xj)

)
+1si=sj

(
η2 + σ2

b exp

(
−1

2
(xi − xj)ᵀL(xi − xj)

)
+1xi=xjσ

2
w

)

Firstly, an independent noise model is fitted by clamping η2 = σ2
b = 0 to yield

LIND, σ2
θ̄

IND
, σ2

w
IND

= argmax P[Y n|X̃n, L, σ2
θ̄ , η

2 = σ2
b = 0, σ2

w] (B.8)

Secondly, the noise parameters η2, σ2
b , σ

2
w are optimized whilst keeping keeping

the total noise fixed η2 + σ2
b + σ2

w = σ2
w
IND

which is a two-dimensional optimization,

we reparameterize as follows

η2(α, β) = β(1− α)σ2
w
IND

σ2
b (α, β) = (1− β)(1− α)σ2

w
IND

σ2
w(β) = ασ2

w
IND

α, β = argmax
[0,1]2

P[Y n|X̃n, LIND, σ2
θ̄

IND
, η2(α, β), σ2

b (α, β), σ2
w(β)]

Thirdly, the final MLE estimates of all parameters are simultaneously fine-

tuned by gradient ascent. This three-stage method guarantees that the found

likelihood is greater than the equivalent non-CRN parameter estimates and the

second extra step of optimization is only 2-dimensional.

175



B.2.2 Optimization of KGCRN
n (x, s)

Derivatives of KGCRN and KGPW, when evaluated by discretization over X as we do,

are easily (but tediously) derived and can be found in multiple previous works Scott

et al. [2011b], Xie et al. [2016]. Alternatively, any automatic differentiation package,

(Autograd, TensorFlow, PyTorch) may be used as the mathematical operations are

all common functions. We propose the following optimization procedure. Firstly,

KGCRN(x, s) is evaluated across an initial Latin Hypercube design with 1000 points

over the acquisition space X̃acq = X × {1, ...,maxSn + 1}. Secondly, the top 20

initial points are used to initialize 100 steps of conjugate gradient ascent over X

holding the seed constant within each run. Thirdly, for the largest (x, s) pair found,

KGCRN(x, s) is evaluated for the same x on all seeds s ∈ {1, ...,maxSn + 1} and

finally 20 steps of gradient ascent are applied to fine tune the x from the best seed.

When not using common random numbers, stages one and two all use the same new

seed and stages three and four are skipped.

176



Bibliography

Raul Astudillo and P Frazier. Multi-attribute bayesian optimization under utility

uncertainty. In Proceedings of the NIPS Workshop on Bayesian Optimization,

2017.

R. Bardenet, Mátyás Brendel, Balázs Kégl, and Michele Sebag. Collaborative

hyperparameter tuning. In International Conference on Machine Learning, pages

199–207, 2013.

Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp. A racing

algorithm for configuring metaheuristics. In Proceedings of the 4th Annual Confer-

ence on Genetic and Evolutionary Computation, pages 11–18. Morgan Kaufmann

Publishers Inc., 2002.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Edwin V Bonilla, Kian M Chai, and Christopher Williams. Multi-task gaussian

process prediction. In Advances in neural information processing systems, pages

153–160, 2008.

J. Branke, S. E. Chick, and C. Schmidt. Selecting a Selection Procedure. Management

Science, 53(12):1916–1932, 2007.

Jürgen Branke and Jawad Elomari. Racing with a fixed budget and a self-adaptive

significance level. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7997 LNCS:

272–280, 2013. ISSN 03029743. doi: 10.1007/978-3-642-44973-4{\ }29.

177



Kuo-Hao Chang, L Jeff Hong, and Hong Wan. Stochastic trust-region response-surface

method (strong)a new response-surface framework for simulation optimization.

INFORMS Journal on Computing, 25(2):230–243, 2013.

C.-H. Chen, S. E. Chick, L. H. Lee, and N. A. Pujowidianto. Ranking and selection:

Efficient simulation budget allocation. In Handbook of Simulation Optimization,

pages 45–80. Springer, 2015.

Chun-Hung Chen. A lower bound for the correct subset-selection probability and its

application to discrete-event system simulations. IEEE transactions on automatic

control, 41(8):1227–1231, 1996.

Xi Chen, Bruce E Ankenman, and Barry L Nelson. The effects of common random

numbers on stochastic kriging metamodels. ACM Transactions on Modeling and

Computer Simulation (TOMACS), 22(2):7, 2012.

C. Chevalier, J. Bect, D. Ginsbourger, E. Vazquez, V. Picheny, and Y. Richet.

Fast parallel kriging-based stepwise uncertainty reduction with application to the

identification of an excursion set. Technometrics, 56(4):455–465, 2014.

Stephen E Chick and Koichiro Inoue. New two-stage and sequential procedures for

selecting the best simulated system. Operations Research, 49(5):732–743, 2001.

Stephen E. Chick, Jürgen Branke, and Christian Schmidt. Sequential Sampling to

Myopically Maximize the Expected Value of Information. INFORMS Journal

on Computing, 22(1):71–80, feb 2010. doi: 10.1287/ijoc.1090.0327. URL http:

//pubsonline.informs.org/doi/abs/10.1287/ijoc.1090.0327.

Tinkle Chugh. Scalarizing functions in bayesian multiobjective optimization. arXiv

preprint arXiv:1904.05760, 2019.

Erhan Çınlar. Probability and stochastics, volume 261. Springer Science & Business

Media, 2011.

Lawrence Davis. Handbook of genetic algorithms. 1991.

178

http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1090.0327
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1090.0327


Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy

search for robotics. Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

Alexander IJ Forrester, András Sóbester, and Andy J Keane. Multi-fidelity optim-

ization via surrogate modelling. In Proceedings of the Royal Society of London

A: Mathematical, Physical and Engineering Sciences, volume 463:2088, pages

3251–3269. The Royal Society, 2007.

P. Frazier, W. Powell, and S. Dayanik. The knowledge-gradient policy for correlated

normal beliefs. INFORMS Journal on Computing, 21(4):599–613, 2009a.

P. I. Frazier and A. M. Kazachkov. Guessing preferences: A new approach to multi-

attribute ranking and selection. In Proceedings of the 2011 Winter Simulation

Conference (WSC), pages 4319–4331, Dec 2011. doi: 10.1109/WSC.2011.6148119.

P. I. Frazier, W. B. Powell, and S. Dayanik. A knowledge-gradient policy for

sequential information collection. SIAM Journal on Control and Optimization, 47

(5):2410–2439, sep 2008.

Peter Frazier, Warren Powell, and Savas Dayanik. The knowledge-gradient policy

for correlated normal beliefs. INFORMS journal on Computing, 21(4):599–613,

2009b.

Michael C Fu. Optimization for simulation: Theory vs. practice. INFORMS Journal

on Computing, 14(3):192–215, 2002.

Michael C Fu, J-Q Hu, C-H Chen, and Xiaoping Xiong. Optimal computing budget

allocation under correlated sampling. In Proceedings of the 2004 Winter Simulation

Conference, 2004., volume 1. IEEE, 2004.

D. Ginsbourger, J. Baccou, C. Chevalier, F. Perales, N. Garland, and Y Monerie.

Bayesian adaptive reconstruction of profile optima and optimizers. SIAM/ASA

Journal on Uncertainty Quantification, 2(1):490–510, 2014.

Bjürn Görder and Michael Kolonko. Ranking and selection: A new sequential

bayesian procedure for use with common random numbers. ACM Transactions on

Modeling and Computer Simulation (TOMACS), 29(1):2, 2019.

179



R. B. Gramacy and H. K. H. Lee. Optimization under unknown constraints. In

Bayesian Statistics 9, 2011.

Matthew Groves, Michael Pearce, and Jürgen Branke. On parallelizing multi-task

bayesian optimization. In 2018 Winter Simulation Conference (WSC), pages

1993–2002. IEEE, 2018.

S. S. Gupta and K. J. Miescke. Bayesian look ahead one-stage sampling allocations

for selecting the best population. Journal of Statistical Planning and Inference, 54

(2):229–244, 1996.

William W Hager. Updating the inverse of a matrix. SIAM review, 31(2):221–239,

1989.

J. Heger, J. Branke, T. Hildebrandt, and B. Scholz-Reiter. Dynamic adjustment of

dispatching rule parameters in flow shops with sequence-dependent set-up times.

International Journal of Production Research, pages 6812–6824, 2016.

Daniel Hernández-Lobato, Jose Hernandez-Lobato, Amar Shah, and Ryan Adams.

Predictive entropy search for multi-objective bayesian optimization. In Interna-

tional Conference on Machine Learning, pages 1492–1501, 2016.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation

for scalable learning of bayesian neural networks. In International Conference on

Machine Learning, pages 1861–1869, 2015.

J. M. Hernandez-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy

search for efficient global optimization of black-box functions. In Advances in

Neural Information Processing Systems, pages 918–926. Curran Associates, Inc.,

2014.

Ruimeng Hu and Mike Ludkovski. Sequential design for ranking response surfaces.

arXiv preprint arXiv:1509.00980, 2015.

D. Huang, T. T. Allen, W. I. Notz, and N. Zeng. Global optimization of stochastic

black-box systems via sequential kriging meta-models. Journal of Global Optimiz-

ation, 34(3):441–466, mar 2006a.

180



Deng Huang, TT Allen, WI Notz, and RA Miller. Sequential kriging optimization

using multiple-fidelity evaluations. Structural and Multidisciplinary Optimization,

32(5):369–382, 2006b.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based

optimization for general algorithm configuration. In International Conference on

Learning and Intelligent Optimization, pages 507–523. Springer, 2011.

Christian Igel. No free lunch theorems: Limitations and perspectives of metaheuristics.

In Theory and principled methods for the design of metaheuristics, pages 1–23.

Springer, 2014.

Christian Igel and Marc Toussaint. Recent results on no-free-lunch theorems for

optimization. ArXiv, cs.NE/0303032, 2003.

Hamed Jalali, Inneke Van Nieuwenhuyse, and Victor Picheny. Comparison of kriging-

based algorithms for simulation optimization with heterogeneous noise. European

Journal of Operational Research, 261(1):279–301, 2017.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive

black-box functions. Journal of Global optimization, 13(4):455–492, 1998a.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optim-

ization of expensive black-box functions. Journal of Global optimization, 13(4):

455–492, 1998b.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás

Póczos. Parallelised bayesian optimisation via thompson sampling. In International

Conference on Artificial Intelligence and Statistics, pages 133–142, 2018.

Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated

annealing. science, 220(4598):671–680, 1983.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.

Fast bayesian optimization of machine learning hyperparameters on large datasets.

arXiv preprint arXiv:1605.07079, 2016.

181



Joshua Knowles. Parego: a hybrid algorithm with on-line landscape approxima-

tion for expensive multiobjective optimization problems. IEEE Transactions on

Evolutionary Computation, 10(1):50–66, 2006.

Andreas Krause and Cheng S Ong. Contextual gaussian process bandit optimization.

In Advances in Neural Information Processing Systems, pages 2447–2455, 2011.

Loo Hay Lee, Ek Peng Chew, Suyan Teng, and David Goldsman. Optimal computing

budget allocation for multi-objective simulation models. In Proceedings of the 2004

Winter Simulation Conference, 2004., volume 1. IEEE, 2004.

S. Morales-Enciso and J. Branke. Tracking global optima in dynamic environments

with efficient global optimization. European Journal of Operational Research, 242:

744–755, 2015.

Iain Murray and Ryan P Adams. Slice sampling covariance hyperparameters of

latent gaussian models. In Advances in neural information processing systems,

pages 1732–1740, 2010.

Barry L Nelson and Frank J Matejcik. Using common random numbers for

indifference-zone selection and multiple comparisons in simulation. Management

Science, 41(12):1935–1945, 1995.

Mihai Oltean. Searching for a practical evidence of the no free lunch theorems. In In-

ternational Workshop on Biologically Inspired Approaches to Advanced Information

Technology, pages 472–483. Springer, 2004.

Raghu Pasupathy and Shane G Henderson. A testbed of simulation-optimization

problems. In Proceedings of the 2006 winter simulation conference, pages 255–263.

IEEE, 2006.

Michael Pearce and Jürgen Branke. Bayesian simulation optimization with input

uncertainty. In 2017 Winter Simulation Conference (WSC), pages 2268–2278.

IEEE, 2017a.

182



Michael Pearce and Jürgen Branke. Efficient expected improvement estimation for

continuous multiple ranking and selection. In Proceedings of the 2017 Winter

Simulation Conference, pages 171–183. IEEE Press, 2017b.

Michael Pearce and Jürgen Branke. Efficient information collection on portfolios.

Warwick Research Archive Portal, 2017c.

Michael Pearce and Jürgen Branke. Continuous multi-task bayesian optimisation

with correlation. European Journal of Operational Research, 270(3):1074–1085,

2018.

Michael Pearce, Matthias Poloczek, and Branke Jürgen. Bayesian simulation optim-

ization with common random numbers. In 2019 Winter Simulation Conference,

page to appear, 2019.

V. Picheny, D. Ginsbourger, Y. Richet, and G. Caplin. Quantile-based optimization

of noisy computer experiments with tunable precision. Technometrics, 55(1):2–13,

2013a.

V. Picheny, T. Wagner, and D. Ginsbourger. A benchmark of kriging-based infill

criteria for noisy optimization. Structural and Multidisciplinary Optimization, 48

(3):607–626, 2013b.

Victor Picheny. A stepwise uncertainty reduction approach to constrained global

optimization. In Artificial Intelligence and Statistics, pages 787–795, 2014.

Victor Picheny. Multiobjective optimization using gaussian process emulators via

stepwise uncertainty reduction. Statistics and Computing, 25(6):1265–1280, 2015.

Matthias Poloczek, Jialei Wang, and Peter I Frazier. Multi-information source

optimization. arXiv preprint arXiv:1603.00389, 2016a.

Matthias Poloczek, Jialei Wang, and Peter I Frazier. Warm starting Bayesian

optimization. In Winter Simulation Conference, pages 770–781. IEEE, 2016b.

Matthias Poloczek, Jialei Wang, and Peter Frazier. Multi-information source optim-

ization. In Advances in Neural Information Processing Systems, pages 4289–4299,

2017.

183



W. H. Press, S. A. Teukolsky, S. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C, volume 2. Cambridge University Press, Cambridge, 1996.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

MIT Press, 2004. ISBN 026218253X.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School

on Machine Learning, pages 63–71. Springer, 2003.

Peter L Salemi, Eunhye Song, Barry L Nelson, and Jeremy Staum. Gaussian markov

random fields for discrete optimization via simulation: Framework and algorithms.

Operations Research, 67(1):250–266, 2019.

Diariétou Sambakhé, Lauriane Rouan, Jean-Noël Bacro, and Eric Gozé. Conditional

optimization of a noisy function using a kriging metamodel. Journal of Global

Optimization, 73(3):615–636, 2019.

E Schulz, M Speekenbrink, JM Hernández-Lobato, Z Ghahramani, and SJ Gershman.

Quantifying mismatch in bayesian optimization. In Nips workshop on bayesian

optimization: Black-box optimization and beyond, 2016.

W. Scott, P. Frazier, and W. Powell. The correlated knowledge gradient for simulation

optimization of continuous parameters using gaussian process regression. SIAM

Journal on Optimization, 21(3):996–1026, jul 2011a.

Warren Scott, Peter Frazier, and Warren Powell. The correlated knowledge gradi-

ent for simulation optimization of continuous parameters using gaussian process

regression. SIAM Journal on Optimization, 21(3):996–1026, 2011b.

Haihui Shen, L Jeff Hong, and Xiaowei Zhang. Ranking and selection with covariates

for personalized decision making. arXiv preprint arXiv:1710.02642, 2017.

K. A. Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm

selection. ACM Computing Surveys, 41(1):1–25, dec 2008.

Kate Smith-Miles, Davaatseren Baatar, Brendan Wreford, and Rhyd Lewis. Towards

objective measures of algorithm performance across instance space. Computers

184



and Operations Research, 45:12–24, 2014. doi: 10.1016/j.cor.2013.11.015. URL

http://dx.doi.org/10.1016/j.cor.2013.11.015.

Kate A Smith-Miles, Ross JW James, John W Giffin, and Yiqing Tu. A knowledge

discovery approach to understanding relationships between scheduling problem

structure and heuristic performance. In International Conference on Learning and

Intelligent Optimization, pages 89–103. Springer, 2009.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization

of machine learning algorithms. In Advances in neural information processing

systems, pages 2951–2959, 2012.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in

the bandit setting: No regret and experimental design. In International Conference

on Machine Learning, pages 1015–1022, 2010.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian

process optimization in the bandit setting: No regret and experimental design.

arXiv preprint arXiv:0912.3995, 2009.

Shinya Suzuki, Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, and Masayuki

Karasuyama. Multi-objective bayesian optimization using pareto-frontier entropy.

arXiv preprint arXiv:1906.00127, 2019.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization.

In Advances in neural information processing systems, pages 2004–2012, 2013.

Saul Toscano-Palmerin and Peter I Frazier. Bayesian optimization with expensive

integrands. arXiv preprint arXiv:1803.08661, 2018.

J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global

optimization of expensive-to-evaluate functions. Journal of Global Optimization,

44(4):509–534, 2009a.

Julien Villemonteix, Emmanuel Vazquez, and Eric Walter. An informational approach

to the global optimization of expensive-to-evaluate functions. Journal of Global

Optimization, 44(4):509, 2009b.

185

http://dx.doi.org/10.1016/j.cor.2013.11.015


Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85,

1994.

David H. Wolpert. Ubiquity symposium: Evolutionary computation and the processes

of life: What the no free lunch theorems really mean: How to improve search

algorithms. Ubiquity, 2013(December):2:1–2:15, December 2013. ISSN 1530-2180.

doi: 10.1145/2555235.2555237. URL http://doi.acm.org/10.1145/2555235.

2555237.

David H Wolpert, William G Macready, et al. No free lunch theorems for optimization.

IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter Frazier. Bayesian

optimization with gradients. In Advances in Neural Information Processing Systems,

pages 5267–5278, 2017.

Jing Xie, Peter I Frazier, and Stephen E Chick. Bayesian optimization via simulation

with pairwise sampling and correlated prior beliefs. Operations Research, 64(2):

542–559, 2016.

Jie Xu, Barry L Nelson, and JEFF Hong. Industrial strength compass: A compre-

hensive algorithm and software for optimization via simulation. ACM Transactions

on Modeling and Computer Simulation (TOMACS), 20(1):3, 2010.

Y. Xu, L. Trippa, P. Müller, and Y. Ji. Subgroup-based adaptive (SUBA) designs

for multi-arm biomarker trials. Statistics in Biosciences, 8(1):159–180, 2014.

Xiaowei Zhang, Haihui Shen, L Jeff Hong, and Liang Ding. Knowledge gradi-

ent for selection with covariates: Consistency and computation. arXiv preprint

arXiv:1906.05098, 2019.

Li Zhou. A survey on contextual multi-armed bandits. CoRR, abs/1508.03326, 2015.

URL http://arxiv.org/abs/1508.03326.

Marcela Zuluaga, Guillaume Sergent, Andreas Krause, and Markus Püschel. Active

learning for multi-objective optimization. In International Conference on Machine

Learning, pages 462–470, 2013.

186

http://doi.acm.org/10.1145/2555235.2555237
http://doi.acm.org/10.1145/2555235.2555237
http://arxiv.org/abs/1508.03326

	Acknowledgments
	Declarations
	Abstract
	Chapter Introduction
	Chapter Background and Related Work
	Ranking and Selection
	Gaussian Process Model Based Optimization
	Multi–Task Gaussian process Based Optimization
	Multi-Objective Optimization
	Multi–Information–Source Optimization
	Task Conditional Optimization
	Optimization of Sums of Functions and Common Random Numbers


	Chapter Technical Background
	Gaussian Process Bayesian Optimisation
	Gaussian Process Regression
	Generative Model
	Conditioning a Gaussian Distribution
	Stochastic Function Outputs
	Hyperparameters
	Multi-Task Gaussian Processes

	Value of Information for Acquisition Functions
	Knowledge Gradient
	Efficient Global Optimization
	General Derivation Procedure
	A Failure Case of the Myopic Value of Information Recipe


	Chapter Discrete Task Conditional Ranking and Selection
	Introduction
	Problem Definition
	Sampling Methods
	Regional Expected Value of Improvement Policy
	Noisy Expected Value of Improvement Policy
	Expected Value of Improvement Policy, EVI

	Numerical Experiments
	Synthetic Experiments Setup
	Mapping based on Latin Hypercube Design
	Results
	The Early/Tardy Machine Scheduling Problem

	Conclusion and Future Work

	Chapter Continuous Task Conditional Ranking and Selection
	Introduction
	Problem Definition
	Sampling Methods
	Local Expected Value of Improvement
	Regional Expected Value of Improvement
	Neighbors Only Regional Expected Value of Improvement

	Numerical Experiments
	Alternative Methods
	Results

	Conclusion

	Chapter Multi-Task Conditional Bayesian Optimization
	Introduction
	Problem Formulation
	Myopic Sampling Methods
	CLEVI Sampling Policy
	REVI Sampling Policy
	Discrete Task Distributions 
	Efficient Monte Carlo Integration

	Comparison with the Profile Expected Improvement Algorithm 
	Numerical Experiments
	Rosenbrock Test Function
	High Dimensional Test Functions
	Finite Tasks

	Conclusion and Future Work

	Chapter Bayesian Optimization with Uncertain Inputs
	Introduction
	Problem Definition
	Sampling Methods
	Efficient Global Optimization for Input Uncertainty
	Knowledge Gradient for Input Uncertainty
	Including the Sampled Input in the Monte-Carlo Integral

	Numerical Experiments
	Benchmark Methods
	Results

	Conclusion

	Chapter Bayesian Optimization with Common Random Numbers
	Introduction
	Problem Definition
	A Surrogate Model for Simulation with Common Random Numbers
	The Gaussian Process Generative Model
	Inferring the Objective (x,s)
	Inferring the Target (x)

	Knowledge Gradient for Common Random Numbers
	Acquisition Function
	Implementation Practicalities
	Algorithm Properties

	Comparison with Previous Work
	Compound Sphericity
	Comparison with Knowledge Gradient with Pairwise Sampling

	Numerical Experiments
	Compared Algorithms and Variants
	Synthetic Data, no Bias Functions
	Assemble to Order Benchmark
	Ambulances in a Square Problem

	Conclusion

	Chapter Conclusions and Future Work
	Conclusion
	Future Work

	Appendix Proofs from Chapter 4
	Proof of Theorem 4.1
	Preparatory Material
	Proof of Theorem 4.1

	Dynamic Programming Formulation
	Myopic Optimality of the REVI Policy
	Asymptotic Optimality
	Bound on Sub-Optimality, Proof of Theorem 4.3.2
	Preparatory Material
	Proof of Theorem A.2.3


	Appendix Proofs and Further Experiments from Chapter 8
	Estimating the Target
	Proof of Theorem 8.4.1
	Proof of Propositions 8.5.3 and 8.5.4

	Further Experimental Results
	Algorithm Implementation Details
	Hyperparameter Learning
	Optimization of KGCRNn(x,s)



